In the recent years the progressive decrease in fossil petroleum resources and gradual deprivation of the environment have attracted increasing interest towards the use of biomass as renewable carbon source for the production of chemicals and transportation fuels. In particular, lignocellulosic biomass represents an abundant and inexpensive renewable resource with high carbon sequestration ability and non-polluting. In this paper, the valorisation of mixtures made of n-butanol (n-BuOH), butyl levulinate (BL) and dibutyl ether (DBE), in different percentages, as additive fuel for compression ignition (CI) internal combustion engine (ICE) was studied. These mixtures can be directly obtained from the catalytic alcoholysis reaction of the cellulosic fraction of raw and pre-treated lignocellulosic biomasses. Moreover, the possibility to recycle and reutilize the excess alcohol (n-Butanol), during the catalytic alcoholysis reaction, has been considered since it represents an opportunity to reduce the overall costs of the process. Therefore, a blend constituted only by BL and DBE has been also tested. The model mixtures were prepared by using commercial reactants, characterized by compositions analogous to those of the reaction mixtures. These model mixtures were tested as blend with Diesel fuel in a CI-ICE with the measurement of pollutant emission and performance. Results have been compared with those obtained fuelling the engine with a commercial Diesel fuel. As a whole, tests results have evidenced the potentiality of these novel blending mixtures to reduce the emissions of particulate without any significant increase in the other pollutants and negligible changes in engine power and efficiency.

Bio-additives for CI engines from one-pot alcoholysis reaction of lignocellulosic biomass: An experimental activity

Raspolli Galletti A. M.
Primo
Investigation
;
Caposciutti G.
Secondo
;
Pasini G.;Antonelli M.
Penultimo
;
Frigo S.
Ultimo
2020-01-01

Abstract

In the recent years the progressive decrease in fossil petroleum resources and gradual deprivation of the environment have attracted increasing interest towards the use of biomass as renewable carbon source for the production of chemicals and transportation fuels. In particular, lignocellulosic biomass represents an abundant and inexpensive renewable resource with high carbon sequestration ability and non-polluting. In this paper, the valorisation of mixtures made of n-butanol (n-BuOH), butyl levulinate (BL) and dibutyl ether (DBE), in different percentages, as additive fuel for compression ignition (CI) internal combustion engine (ICE) was studied. These mixtures can be directly obtained from the catalytic alcoholysis reaction of the cellulosic fraction of raw and pre-treated lignocellulosic biomasses. Moreover, the possibility to recycle and reutilize the excess alcohol (n-Butanol), during the catalytic alcoholysis reaction, has been considered since it represents an opportunity to reduce the overall costs of the process. Therefore, a blend constituted only by BL and DBE has been also tested. The model mixtures were prepared by using commercial reactants, characterized by compositions analogous to those of the reaction mixtures. These model mixtures were tested as blend with Diesel fuel in a CI-ICE with the measurement of pollutant emission and performance. Results have been compared with those obtained fuelling the engine with a commercial Diesel fuel. As a whole, tests results have evidenced the potentiality of these novel blending mixtures to reduce the emissions of particulate without any significant increase in the other pollutants and negligible changes in engine power and efficiency.
2020
Raspolli Galletti, A. M.; Caposciutti, G.; Pasini, G.; Antonelli, M.; Frigo, S.
File in questo prodotto:
File Dimensione Formato  
e3sconf_ati2020_08005.pdf

accesso aperto

Descrizione: pdf
Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 711.97 kB
Formato Adobe PDF
711.97 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1065120
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact