We study the deviation probability P{|∥X∥-E∥X∥|>t} where X is a ϕ-subgaussian random element taking values in the Hilbert space l2 and ϕ(x) is an N-function. It is shown that the order of this deviation is exp{-ϕ*(Ct)}, where C depends on the sum of ϕ-subgaussian standard of the coordinates of the random element X and ϕ*(x) is the Young–Fenchel transform of ϕ(x). An application to the classically subgaussian random variables (ϕ(x)=x2/2) is given.
Autori interni: | ||
Autori: | GIULIANO ANTONINI R.; TIEN-CHUNG HU; A. VOLODIN | |
Titolo: | On the Concentration Phenomenon for phi-subgaussian Random Elements | |
Anno del prodotto: | 2006 | |
Digital Object Identifier (DOI): | 10.1016/j.spl.2005.08.035 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.