We propose a novel methodology for representation learning on graph-structured data, in which a stack of Bayesian Networks learns different distributions of a vertex's neighbour- hood. Through an incremental construction policy and layer-wise training, we can build deeper architectures with respect to typical graph convolutional neural networks, with benefits in terms of context spreading between vertices. First, the model learns from graphs via maximum likelihood estimation without using target labels. Then, a supervised readout is applied to the learned graph embeddings to deal with graph classification and vertex classification tasks, showing competitive results against neural models for graphs. The computational complexity is linear in the number of edges, facilitating learning on large scale data sets. By studying how depth affects the performances of our model, we discover that a broader context generally improves performances. In turn, this leads to a critical analysis of some benchmarks used in literature.

Probabilistic learning on graphs via contextual architectures

Bacciu D.
Co-primo
;
Errica F.
Co-primo
;
Micheli A.
Co-primo
2020-01-01

Abstract

We propose a novel methodology for representation learning on graph-structured data, in which a stack of Bayesian Networks learns different distributions of a vertex's neighbour- hood. Through an incremental construction policy and layer-wise training, we can build deeper architectures with respect to typical graph convolutional neural networks, with benefits in terms of context spreading between vertices. First, the model learns from graphs via maximum likelihood estimation without using target labels. Then, a supervised readout is applied to the learned graph embeddings to deal with graph classification and vertex classification tasks, showing competitive results against neural models for graphs. The computational complexity is linear in the number of edges, facilitating learning on large scale data sets. By studying how depth affects the performances of our model, we discover that a broader context generally improves performances. In turn, this leads to a critical analysis of some benchmarks used in literature.
2020
Bacciu, D.; Errica, F.; Micheli, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1065832
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 5
social impact