We prove a local existence and uniqueness result of crystalline mean curvature flow starting from a compact convex admissible set in IRN. This theorem can handle the facet breaking/bending phenomena, and can be generalized to any anisotropic mean curvature flow. The method provides also a generalized geometric evolution starting from any compact convex set, existing up to the extinction time, satisfying a comparison principle, and defining a continuous semigroup in time. We prove that, when the initial set is convex, our evolution coincides with the flat phi-curvature flow in the sense of Almgren-Taylor-Wang. As a by-product, it turns out that the flat phi-curvature flow starting from a compact convex set is unique.

Crystalline mean curvature flow of convex sets

NOVAGA, MATTEO
2006-01-01

Abstract

We prove a local existence and uniqueness result of crystalline mean curvature flow starting from a compact convex admissible set in IRN. This theorem can handle the facet breaking/bending phenomena, and can be generalized to any anisotropic mean curvature flow. The method provides also a generalized geometric evolution starting from any compact convex set, existing up to the extinction time, satisfying a comparison principle, and defining a continuous semigroup in time. We prove that, when the initial set is convex, our evolution coincides with the flat phi-curvature flow in the sense of Almgren-Taylor-Wang. As a by-product, it turns out that the flat phi-curvature flow starting from a compact convex set is unique.
2006
Bellettini, G; Caselles, V; Chambolle, A; Novaga, Matteo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/106832
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 51
social impact