Wrist-worn wearable devices equipped with heart activity sensors can provide valuable data that can be used for preventative health. However, hearth activity analysis from these devices suffers from noise introduced by motion artifacts. Methods traditionally used to remove outliers based on motion data can yield to discarding clean data, if some movement was present, and accepting noisy data, i.e., subject was still but the sensor was misplaced. This work shows that self-organizing maps (SOMs) can be used to effectively accept or reject sections of heart data collected from unreliable devices, such as wrist-worn devices. In particular, the proposed SOM-based filter can accept a larger amount of measurements (less false negatives) with an higher overall quality with respect to methods solely based on statistical analysis of motion data. We provide an empirical analysis on real-world wearable data, comprising heart and motion data of users. We show how topographic mapping can help identifying and interpreting patterns in the sensor data and help relating them to an assessment of user state. More importantly, our experimental results show the proposed approach is able to retain almost twice the amount of data while keeping samples with an error that is an order of magnitude lower with respect to a filter based on accelerometric data.

Topographic mapping for quality inspection and intelligent filtering of smart-bracelet data

Bacciu, Davide;Bertoncini, Gioele;Morelli, Davide
2021-01-01

Abstract

Wrist-worn wearable devices equipped with heart activity sensors can provide valuable data that can be used for preventative health. However, hearth activity analysis from these devices suffers from noise introduced by motion artifacts. Methods traditionally used to remove outliers based on motion data can yield to discarding clean data, if some movement was present, and accepting noisy data, i.e., subject was still but the sensor was misplaced. This work shows that self-organizing maps (SOMs) can be used to effectively accept or reject sections of heart data collected from unreliable devices, such as wrist-worn devices. In particular, the proposed SOM-based filter can accept a larger amount of measurements (less false negatives) with an higher overall quality with respect to methods solely based on statistical analysis of motion data. We provide an empirical analysis on real-world wearable data, comprising heart and motion data of users. We show how topographic mapping can help identifying and interpreting patterns in the sensor data and help relating them to an assessment of user state. More importantly, our experimental results show the proposed approach is able to retain almost twice the amount of data while keeping samples with an error that is an order of magnitude lower with respect to a filter based on accelerometric data.
2021
Bacciu, Davide; Bertoncini, Gioele; Morelli, Davide
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1070912
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 3
social impact