Attribute-Based Encryption (ABE) is an emerging cryptographic technique that allows one to embed a fine-grained access control mechanism into encrypted data. In this paper we propose a novel ABE scheme called SEA-BREW (Scalable and Efficient Abe with Broadcast REvocation for Wireless networks), which is suited for Internet of Things (IoT) and Industrial IoT (IIoT) applications. In contrast to state-of-the-art ABE schemes, ours is capable of securely performing key revocations with a single short broadcast message, instead of a number of unicast messages that is linear with the number of nodes. This is desirable for low-bitrate Wireless Sensor and Actuator Networks (WSANs) which often are the heart of (I)IoT systems. In SEA-BREW, sensors, actuators, and users can exchange encrypted data via a cloud server, or directly via wireless if they belong to the same WSAN. We formally prove that our scheme is secure also in case of an untrusted cloud server that colludes with a set of users, under the generic bilinear group model. We show by simulations that our scheme requires a constant computational overhead on the cloud server with respect to the complexity of the access control policies. This is in contrast to state-of-the-art solutions, which require instead a linear computational overhead.

SEA-BREW: A scalable Attribute-Based Encryption revocable scheme for low-bitrate IoT wireless networks

La Manna, Michele
;
Perazzo, Pericle;Dini, Gianluca
2021-01-01

Abstract

Attribute-Based Encryption (ABE) is an emerging cryptographic technique that allows one to embed a fine-grained access control mechanism into encrypted data. In this paper we propose a novel ABE scheme called SEA-BREW (Scalable and Efficient Abe with Broadcast REvocation for Wireless networks), which is suited for Internet of Things (IoT) and Industrial IoT (IIoT) applications. In contrast to state-of-the-art ABE schemes, ours is capable of securely performing key revocations with a single short broadcast message, instead of a number of unicast messages that is linear with the number of nodes. This is desirable for low-bitrate Wireless Sensor and Actuator Networks (WSANs) which often are the heart of (I)IoT systems. In SEA-BREW, sensors, actuators, and users can exchange encrypted data via a cloud server, or directly via wireless if they belong to the same WSAN. We formally prove that our scheme is secure also in case of an untrusted cloud server that colludes with a set of users, under the generic bilinear group model. We show by simulations that our scheme requires a constant computational overhead on the cloud server with respect to the complexity of the access control policies. This is in contrast to state-of-the-art solutions, which require instead a linear computational overhead.
2021
La Manna, Michele; Perazzo, Pericle; Dini, Gianluca
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1074482
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 8
social impact