Urea is widely used in agriculture, industry, and food, while it is also a potential fuel. Large-scale urea production relies on fossil fuels, thus there is a strong need for green urea given the increasing penetration of renewable energy sources. A potential alternative is biomass-to-urea; however, it cannot fully convert the biomass carbon into urea. To achieve full carbon conversion, innovative integrated biomass- and power-to-urea processes are designed conceptually. The two green urea production processes are evaluated techno-economically and compared with state-of-the-art methane-to-urea. The results show that the methane-to-urea achieves a system efficiency of 58% (LHV), while biomass-to-urea only has 39% (LHV) with unconverted biomass carbon of up to 60%. The integrated power- and biomass-to-urea has outstanding heat integration performance which fixes all biomass carbon into urea, with an efficiency enhanced up to 53%. Due to the electricity demand, the levelized cost of the urea of integrated biomass- and power-to-urea is 15 – 38 and 58 – 87% points higher than those of the biomass-to-urea and methane-to-urea for the scale of 10 – 60 MWth urea production. The available annual hours and electricity price of renewable electricity have a significant impact on the levelized cost of the urea. When the available annual hours decrease from 7200 to 3600 with an electricity price of 73 $/MWh, the levelized cost of urea increases on average by 13% from 51 $/GJ with the plant capacity being 10 – 60 MWth urea. However, when electricity price is reduced from 73 $/MWh to 35 $/MWh with available annual hours of 3600, the levelized cost decreases on average by 15% from 59 $/GJ with the same plant capacity.

Techno-economic comparison of 100% renewable urea production processes

Zhang, Hanfei;Desideri, Umberto
2021-01-01

Abstract

Urea is widely used in agriculture, industry, and food, while it is also a potential fuel. Large-scale urea production relies on fossil fuels, thus there is a strong need for green urea given the increasing penetration of renewable energy sources. A potential alternative is biomass-to-urea; however, it cannot fully convert the biomass carbon into urea. To achieve full carbon conversion, innovative integrated biomass- and power-to-urea processes are designed conceptually. The two green urea production processes are evaluated techno-economically and compared with state-of-the-art methane-to-urea. The results show that the methane-to-urea achieves a system efficiency of 58% (LHV), while biomass-to-urea only has 39% (LHV) with unconverted biomass carbon of up to 60%. The integrated power- and biomass-to-urea has outstanding heat integration performance which fixes all biomass carbon into urea, with an efficiency enhanced up to 53%. Due to the electricity demand, the levelized cost of the urea of integrated biomass- and power-to-urea is 15 – 38 and 58 – 87% points higher than those of the biomass-to-urea and methane-to-urea for the scale of 10 – 60 MWth urea production. The available annual hours and electricity price of renewable electricity have a significant impact on the levelized cost of the urea. When the available annual hours decrease from 7200 to 3600 with an electricity price of 73 $/MWh, the levelized cost of urea increases on average by 13% from 51 $/GJ with the plant capacity being 10 – 60 MWth urea. However, when electricity price is reduced from 73 $/MWh to 35 $/MWh with available annual hours of 3600, the levelized cost decreases on average by 15% from 59 $/GJ with the same plant capacity.
2021
Zhang, Hanfei; Wang, Ligang; Van herle, Jan; Maréchal, François; Desideri, Umberto
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1075264
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 23
social impact