We consider shape functionals of the form $F_q(Omega)=P(Omega)T^q(Omega)$ on the class of open sets of prescribed Lebesgue measure. Here $q>0$ is fixed, $P(Omega)$ denotes the perimeter of $Omega$ and $T(Omega)$ is the torsional rigidity of $Omega$. The minimization and maximization of $F_q(Omega)$ is considered on various classes of admissible domains $Omega$: in the class ${cal A}_{all}$ of {it all domains}, in the class ${cal A}_{convex}$ of {it convex domains}, and in the class ${cal A}_{thin}$ of {it thin domains}.
Some inequalities involving perimeter and torsional rigidity
Luca Briani;Giuseppe Buttazzo
;Francesca Prinari
2021-01-01
Abstract
We consider shape functionals of the form $F_q(Omega)=P(Omega)T^q(Omega)$ on the class of open sets of prescribed Lebesgue measure. Here $q>0$ is fixed, $P(Omega)$ denotes the perimeter of $Omega$ and $T(Omega)$ is the torsional rigidity of $Omega$. The minimization and maximization of $F_q(Omega)$ is considered on various classes of admissible domains $Omega$: in the class ${cal A}_{all}$ of {it all domains}, in the class ${cal A}_{convex}$ of {it convex domains}, and in the class ${cal A}_{thin}$ of {it thin domains}.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
bributpri.pdf
accesso aperto
Tipologia:
Versione finale editoriale
Licenza:
Creative commons
Dimensione
273.01 kB
Formato
Adobe PDF
|
273.01 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


