Liquefied natural gas (LNG) is a viable, environmental-friendly alternative marine fuel. Several LNG-fueled vessels are already operating, and the LNG market is expected to grow further in the next years. A capillary marine LNG infrastructure network is developing to strengthen the fuel supply chain, which includes smallscale LNG storage and bunkering installations. However, safety remains a crucial aspect for the expansion of sustainable and reliable LNG technologies due to flammability hazards of natural gas. Storage tanks are vulnerable units from a safety point of view: External fires might affect LNG tanks leading to their catastrophic failure with a possibility of accident escalation. The present contribution aims at the evaluation of thermal response of storage tanks exposed to high levels of thermal radiation from distant sources, such as a pool fires generated after the ignition of LNG spills. A two-dimension computational fluid dynamic (CFD) approach is applied to predict tank pressurization rate and temperature distribution for a set of case studies. The results obtained give insight about the dynamic response of pressurized cryogenic vessels involved in process accidents, providing a useful contribution to emergency response planning as well as identifying important safety aspects regarding LNG storage and distribution chain.

LNG Tanks exposed to distant pool fires: A cfd study

Landucci G.
Penultimo
;
2020-01-01

Abstract

Liquefied natural gas (LNG) is a viable, environmental-friendly alternative marine fuel. Several LNG-fueled vessels are already operating, and the LNG market is expected to grow further in the next years. A capillary marine LNG infrastructure network is developing to strengthen the fuel supply chain, which includes smallscale LNG storage and bunkering installations. However, safety remains a crucial aspect for the expansion of sustainable and reliable LNG technologies due to flammability hazards of natural gas. Storage tanks are vulnerable units from a safety point of view: External fires might affect LNG tanks leading to their catastrophic failure with a possibility of accident escalation. The present contribution aims at the evaluation of thermal response of storage tanks exposed to high levels of thermal radiation from distant sources, such as a pool fires generated after the ignition of LNG spills. A two-dimension computational fluid dynamic (CFD) approach is applied to predict tank pressurization rate and temperature distribution for a set of case studies. The results obtained give insight about the dynamic response of pressurized cryogenic vessels involved in process accidents, providing a useful contribution to emergency response planning as well as identifying important safety aspects regarding LNG storage and distribution chain.
2020
Iannaccone, T.; Scarponi, G. E.; Landucci, G.; Cozzani, V.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1080954
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact