Nowadays, given the technological advance in CT imaging and increasing heterogeneity in characteristics of CT scanners, a number of CT scanners with different manufacturers/technologies are often installed in a hospital centre and used by various departments. In this phantom study, a comprehensive assessment of image quality of 5 scanners (from 3 manufacturers and with different models) for head CT imaging, as clinically used at a single hospital centre, was hence carried out. Helical and/or sequential acquisitions of the Catphan-504 phantom were performed, using the scanning protocols (CTDIvol range: 54.7–57.5 mGy) employed by the staff of various Radiology/Neuroradiology departments of our institution for routine head examinations. CT image quality for each scanner/acquisition protocol was assessed through noise level, noise power spectrum (NPS), contrast-to-noise ratio (CNR), modulation transfer function (MTF), low contrast detectability (LCD) and non-uniformity index analyses. Noise values ranged from 3.5 HU to 5.7 HU across scanners/acquisition protocols. NPS curves differed in terms of peak position (range: 0.21–0.30 mm-1). A substantial variation of CNR values with scanner/acquisition protocol was observed for different contrast inserts. The coefficient of variation (standard deviation divided by mean value) of CNR values across scanners/acquisition protocols was 18.3%, 31.4%, 34.2%, 30.4% and 30% for teflon, delrin, LDPE, polystyrene and acrylic insert, respectively. An appreciable difference in MTF curves across scanners/acquisition protocols was revealed, with a coefficient of variation of f50%/f10% of MTF curves across scanners/acquisition protocols of 10.1%/ 7.4%. A relevant difference in LCD performance of different scanners/acquisition protocols was found. The range of contrast threshold for a typical object size of 3 mm was 3.7–5.8 HU. Moreover, appreciable differences in terms of NUI values (range: 4.1%-8.3%) were found. The analysis of several quality indices showed a non-negligible variability in head CT imaging capabilities across different scanners/acquisition protocols. This highlights the importance of a physical in-depth characterization of image quality for each CT scanner as clinically used, in order to optimize CT imaging procedures.

A comprehensive assessment of physical image quality of five different scanners for head CT imaging as clinically used at a single hospital centre—A phantom study

Barca P.;Paolicchi F.;Aringhieri G.;Palmas F.;Marfisi D.;Fantacci M. E.;Caramella D.;Giannelli M.
2021-01-01

Abstract

Nowadays, given the technological advance in CT imaging and increasing heterogeneity in characteristics of CT scanners, a number of CT scanners with different manufacturers/technologies are often installed in a hospital centre and used by various departments. In this phantom study, a comprehensive assessment of image quality of 5 scanners (from 3 manufacturers and with different models) for head CT imaging, as clinically used at a single hospital centre, was hence carried out. Helical and/or sequential acquisitions of the Catphan-504 phantom were performed, using the scanning protocols (CTDIvol range: 54.7–57.5 mGy) employed by the staff of various Radiology/Neuroradiology departments of our institution for routine head examinations. CT image quality for each scanner/acquisition protocol was assessed through noise level, noise power spectrum (NPS), contrast-to-noise ratio (CNR), modulation transfer function (MTF), low contrast detectability (LCD) and non-uniformity index analyses. Noise values ranged from 3.5 HU to 5.7 HU across scanners/acquisition protocols. NPS curves differed in terms of peak position (range: 0.21–0.30 mm-1). A substantial variation of CNR values with scanner/acquisition protocol was observed for different contrast inserts. The coefficient of variation (standard deviation divided by mean value) of CNR values across scanners/acquisition protocols was 18.3%, 31.4%, 34.2%, 30.4% and 30% for teflon, delrin, LDPE, polystyrene and acrylic insert, respectively. An appreciable difference in MTF curves across scanners/acquisition protocols was revealed, with a coefficient of variation of f50%/f10% of MTF curves across scanners/acquisition protocols of 10.1%/ 7.4%. A relevant difference in LCD performance of different scanners/acquisition protocols was found. The range of contrast threshold for a typical object size of 3 mm was 3.7–5.8 HU. Moreover, appreciable differences in terms of NUI values (range: 4.1%-8.3%) were found. The analysis of several quality indices showed a non-negligible variability in head CT imaging capabilities across different scanners/acquisition protocols. This highlights the importance of a physical in-depth characterization of image quality for each CT scanner as clinically used, in order to optimize CT imaging procedures.
2021
Barca, P.; Paolicchi, F.; Aringhieri, G.; Palmas, F.; Marfisi, D.; Fantacci, M. E.; Caramella, D.; Giannelli, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1099754
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact