Cutaneous melanoma is often resistant to therapy due to its high plasticity, as well as its ability to metabolise chemotherapeutic drugs. Sphingolipid signalling plays a pivotal role in its progression and metastasis. One of the ways melanoma alters sphingolipid rheostat is via over-expression of lysosomal acid ceramidase (AC), which catalyses the hydrolysis of pro-apoptotic long-chain ceramides into sphingosine and fatty acid. In this report, we examine the role of acid ceramidase in maintaining cellular homeostasis through the regulation of autophagy and mitochondrial activity in melanoma cell lines. We show that under baseline conditions, wild-type melanoma cells had 3-fold higher levels of the autophagy marker, microtubule-associated proteins 1A/1B light chain 3B (LC3 II), compared to AC-null cells. This difference was further magnified after cell starvation. Moreover, we noticed autophagy impairment in A375 AC-null cells, possibly due to local accumulation of non-metabolized ceramides. Nonetheless, we observed that AC-null cells exhibited a significant increase in mitochondrial membrane potential compared to control cells. Consistent with this observation, we found that, after total starvation, ~30% of AC-null cells undergo apoptosis compared to ~6% of wild-type cells. As expected, AC transfection restored viability in A375 AC-null cells. Together, these findings suggest that AC-null melanoma cells change and adapt their metabolism to survive in the absence of AC, although in a way that does not allow them to cope with the stress of nutrient deprivation.

Ablation of acid ceramidase impairs autophagy and mitochondria activity in melanoma cells

Lai M.
Primo
Conceptualization
;
La Rocca V.;Freer G.;Spezia P. G.;Quaranta P.;Pistello M.
2021-01-01

Abstract

Cutaneous melanoma is often resistant to therapy due to its high plasticity, as well as its ability to metabolise chemotherapeutic drugs. Sphingolipid signalling plays a pivotal role in its progression and metastasis. One of the ways melanoma alters sphingolipid rheostat is via over-expression of lysosomal acid ceramidase (AC), which catalyses the hydrolysis of pro-apoptotic long-chain ceramides into sphingosine and fatty acid. In this report, we examine the role of acid ceramidase in maintaining cellular homeostasis through the regulation of autophagy and mitochondrial activity in melanoma cell lines. We show that under baseline conditions, wild-type melanoma cells had 3-fold higher levels of the autophagy marker, microtubule-associated proteins 1A/1B light chain 3B (LC3 II), compared to AC-null cells. This difference was further magnified after cell starvation. Moreover, we noticed autophagy impairment in A375 AC-null cells, possibly due to local accumulation of non-metabolized ceramides. Nonetheless, we observed that AC-null cells exhibited a significant increase in mitochondrial membrane potential compared to control cells. Consistent with this observation, we found that, after total starvation, ~30% of AC-null cells undergo apoptosis compared to ~6% of wild-type cells. As expected, AC transfection restored viability in A375 AC-null cells. Together, these findings suggest that AC-null melanoma cells change and adapt their metabolism to survive in the absence of AC, although in a way that does not allow them to cope with the stress of nutrient deprivation.
2021
Lai, M.; La Rocca, V.; Amato, R.; Freer, G.; Costa, M.; Spezia, P. G.; Quaranta, P.; Lombardo, G.; Piomelli, D.; Pistello, M.
File in questo prodotto:
File Dimensione Formato  
ijms-22-03247 (1).pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 19.19 MB
Formato Adobe PDF
19.19 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1101182
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact