Lightweight roofs are extremely sensitive to extreme snow loads, as confirmed by recently occurring failures all over Europe. Obviously, the problem is further emphasized in warmer climatic areas, where low design values are generally foreseen for snow loads. Like other climatic actions, representative values of snow loads provided in structural codes are usually derived by means of suitable elaborations of extreme statistics, assuming climate stationarity over time. As climate change impacts are becoming more and more evident over time, that hypothesis is becoming controversial, so that suitable adaptation strategies aiming to define climate resilient design loads need to be implemented. In the paper, past and future trends of ground snow load in Europe are assessed for the period 1950–2100, starting from high-resolution climate simulations, recently issued by the CORDEX program. Maps of representative values of snow loads adopted for structural design, associated with an annual probability of exceedance p = 2%, are elaborated for Europe. Referring to the historical period, the obtained maps are critically compared with the current European maps based on observations. Factors of change maps, referred to subsequent time windows are presented considering RCP4.5 and RCP8.5 emission trajectories, corresponding to medium and maximum greenhouse gas concentration scenarios. Factors of change are thus evaluated considering suitably selected weather stations in Switzerland and Germany, for which high quality point measurements, sufficiently extended over time are available. Focusing on the investigated weather stations, the study demonstrates that climate models can appropriately reproduce historical trends and that a decrease of characteristic values of the snow loads is expected over time. However, it must be remarked that, if on one hand the mean value of the annual maxima tends to reduce, on the other hand, its standard deviation tends to increase, locally leading to an increase of the extreme values, which should be duly considered in the evaluation of structural reliability over time.

Extreme ground snow loads in Europe from 1951 to 2100

Croce, Pietro;Formichi, Paolo;Landi, Filippo
2021-01-01

Abstract

Lightweight roofs are extremely sensitive to extreme snow loads, as confirmed by recently occurring failures all over Europe. Obviously, the problem is further emphasized in warmer climatic areas, where low design values are generally foreseen for snow loads. Like other climatic actions, representative values of snow loads provided in structural codes are usually derived by means of suitable elaborations of extreme statistics, assuming climate stationarity over time. As climate change impacts are becoming more and more evident over time, that hypothesis is becoming controversial, so that suitable adaptation strategies aiming to define climate resilient design loads need to be implemented. In the paper, past and future trends of ground snow load in Europe are assessed for the period 1950–2100, starting from high-resolution climate simulations, recently issued by the CORDEX program. Maps of representative values of snow loads adopted for structural design, associated with an annual probability of exceedance p = 2%, are elaborated for Europe. Referring to the historical period, the obtained maps are critically compared with the current European maps based on observations. Factors of change maps, referred to subsequent time windows are presented considering RCP4.5 and RCP8.5 emission trajectories, corresponding to medium and maximum greenhouse gas concentration scenarios. Factors of change are thus evaluated considering suitably selected weather stations in Switzerland and Germany, for which high quality point measurements, sufficiently extended over time are available. Focusing on the investigated weather stations, the study demonstrates that climate models can appropriately reproduce historical trends and that a decrease of characteristic values of the snow loads is expected over time. However, it must be remarked that, if on one hand the mean value of the annual maxima tends to reduce, on the other hand, its standard deviation tends to increase, locally leading to an increase of the extreme values, which should be duly considered in the evaluation of structural reliability over time.
2021
Croce, Pietro; Formichi, Paolo; Landi, Filippo
File in questo prodotto:
File Dimensione Formato  
climate-09-00133-v2.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 9.15 MB
Formato Adobe PDF
9.15 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1106686
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact