We classify tight contact structures on the small Seifert fibered 3--manifold M(-1; r_1, r_2, r_3) with r_i in (0,1) and r_1, r_2 \geq 1/2. The result is obtained by combining convex surface theory with computations of contact Ozsvath--Szabo invariants. We also show that some of the tight contact structures on the manifolds considered are nonfillable, justifying the use of Heegaard Floer theory.

Tight contact structures on some small Seifert fibered 3-manifolds

LISCA, PAOLO;
2007-01-01

Abstract

We classify tight contact structures on the small Seifert fibered 3--manifold M(-1; r_1, r_2, r_3) with r_i in (0,1) and r_1, r_2 \geq 1/2. The result is obtained by combining convex surface theory with computations of contact Ozsvath--Szabo invariants. We also show that some of the tight contact structures on the manifolds considered are nonfillable, justifying the use of Heegaard Floer theory.
2007
Ghiggini, P; Lisca, Paolo; Stipsicz, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/110779
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 26
social impact