Hydraulic injection by the Pohang enhanced geothermal systems (EGSs) has been suspected to trigger the 2017 moment magnitude (MW) 5.5 Pohang earthquake in South Korea. The last stimulation experiment in the EGS was conducted only 2 months before the disaster, which has led to this suspicion. In this study, we conducted a seismic analysis on the earthquakes that have occurred around the EGS site in the past 10 years. The study included the construction of a velocity model, earthquake detection, the determination of hypocenters, magnitudes, focal mechanisms, and stress inversion, and a clustering analysis. No seismic activity was detected near the study area until November 2015 when there was a loss of a large quantity of heavy drilling mud. For three stimulations of a geothermal well, earthquakes sequentially migrated to the southwest along a fault plane, leading to the location of the mainshock. The delineated fault plane crossed the injection well at approximately 3,800 m, which corresponds to the borehole interval of not only the mud loss but also the breakage of the well's casing due to the mainshock rupture. These findings can be treated as empirical evidence for the hypothesis that the 2017 MW 5.5 Pohang earthquake was initiated on a critically stressed fault zone by the anthropogenic activity of fluid injection, consequentially releasing accumulated strain energy via tectonic loading.

An In-Depth Seismological Analysis Revealing a Causal Link Between the 2017 MW 5.5 Pohang Earthquake and EGS Project

Grigoli F.;
2019-01-01

Abstract

Hydraulic injection by the Pohang enhanced geothermal systems (EGSs) has been suspected to trigger the 2017 moment magnitude (MW) 5.5 Pohang earthquake in South Korea. The last stimulation experiment in the EGS was conducted only 2 months before the disaster, which has led to this suspicion. In this study, we conducted a seismic analysis on the earthquakes that have occurred around the EGS site in the past 10 years. The study included the construction of a velocity model, earthquake detection, the determination of hypocenters, magnitudes, focal mechanisms, and stress inversion, and a clustering analysis. No seismic activity was detected near the study area until November 2015 when there was a loss of a large quantity of heavy drilling mud. For three stimulations of a geothermal well, earthquakes sequentially migrated to the southwest along a fault plane, leading to the location of the mainshock. The delineated fault plane crossed the injection well at approximately 3,800 m, which corresponds to the borehole interval of not only the mud loss but also the breakage of the well's casing due to the mainshock rupture. These findings can be treated as empirical evidence for the hypothesis that the 2017 MW 5.5 Pohang earthquake was initiated on a critically stressed fault zone by the anthropogenic activity of fluid injection, consequentially releasing accumulated strain energy via tectonic loading.
2019
Woo, J. -U.; Kim, M.; Sheen, D. -H.; Kang, T. -S.; Rhie, J.; Grigoli, F.; Ellsworth, W. L.; Giardini, D.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1108239
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 80
  • ???jsp.display-item.citation.isi??? 66
social impact