We focus on the automatic detection of communities in large networks, a challenging problem in many disciplines (such as sociology, biology, and computer science). Humans tend to associate to form families, villages, and nations. Similarly, the elements of real-world networks naturally tend to form highly connected groups. A popular model to represent such structures is the clique, that is, a set of fully interconnected nodes. However, it has been observed that cliques are too strict to represent communities in practice. The k-plex relaxes the notion of clique, by allowing each node to miss up to k connections. Although k-plexes are more flexible than cliques, finding them is more challenging as their number is greater. In addition, most of them are small and not significant. In this paper we tackle the problem of finding only large k-plexes (i.e., comparable in size to the largest clique) and design a meta-algorithm that can be used on top of known enumeration algorithms to return only significant k-plexes in a fraction of the time. Our approach relies on: (1) methods for strongly reducing the search space and (2) decomposition techniques based on the efficient computation of maximal cliques. We demonstrate experimentally that known enumeration algorithms equipped with our approach can run orders of magnitude faster than full enumeration.

A meta-algorithm for finding large k-plexes

Conte A.;
2021-01-01

Abstract

We focus on the automatic detection of communities in large networks, a challenging problem in many disciplines (such as sociology, biology, and computer science). Humans tend to associate to form families, villages, and nations. Similarly, the elements of real-world networks naturally tend to form highly connected groups. A popular model to represent such structures is the clique, that is, a set of fully interconnected nodes. However, it has been observed that cliques are too strict to represent communities in practice. The k-plex relaxes the notion of clique, by allowing each node to miss up to k connections. Although k-plexes are more flexible than cliques, finding them is more challenging as their number is greater. In addition, most of them are small and not significant. In this paper we tackle the problem of finding only large k-plexes (i.e., comparable in size to the largest clique) and design a meta-algorithm that can be used on top of known enumeration algorithms to return only significant k-plexes in a fraction of the time. Our approach relies on: (1) methods for strongly reducing the search space and (2) decomposition techniques based on the efficient computation of maximal cliques. We demonstrate experimentally that known enumeration algorithms equipped with our approach can run orders of magnitude faster than full enumeration.
2021
Conte, A.; Firmani, D.; Patrignani, M.; Torlone, R.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1108259
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact