We present the implementation of a quadratically convergent self-consistent field (QCSCF) algorithm based on an adaptive trust-radius optimisation scheme for restricted open-shell Hartree–Fock (ROHF), restricted Hartree–Fock (RHF), and unrestricted Hartree–Fock (UHF) references. The algorithm can exploit Cholesky decomposition (CD) of the two-electron integrals to allow calculations on larger systems. The most important feature of the QCSCF code lies in its black-box nature–probably the most important quality desired by a generic user. As shown for pilot applications, it does not require one to tune the self-consistent field (SCF) parameters (damping, Pulay's DIIS, and other similar techniques) in difficult-to-converge molecules. Also, it can be used to obtain a very tight convergence with extended basis sets–a situation often needed when computing high-order molecular properties–where the standard SCF algorithm starts to oscillate. Nevertheless, trouble may appear even with a QCSCF solver. In this respect, we discuss what can go wrong, focusing on the multiple UHF solutions of ortho-benzyne.

A black-box, general purpose quadratic self-consistent field code with and without Cholesky decomposition of the two-electron integrals

Nottoli T.;Lipparini F.
2021-01-01

Abstract

We present the implementation of a quadratically convergent self-consistent field (QCSCF) algorithm based on an adaptive trust-radius optimisation scheme for restricted open-shell Hartree–Fock (ROHF), restricted Hartree–Fock (RHF), and unrestricted Hartree–Fock (UHF) references. The algorithm can exploit Cholesky decomposition (CD) of the two-electron integrals to allow calculations on larger systems. The most important feature of the QCSCF code lies in its black-box nature–probably the most important quality desired by a generic user. As shown for pilot applications, it does not require one to tune the self-consistent field (SCF) parameters (damping, Pulay's DIIS, and other similar techniques) in difficult-to-converge molecules. Also, it can be used to obtain a very tight convergence with extended basis sets–a situation often needed when computing high-order molecular properties–where the standard SCF algorithm starts to oscillate. Nevertheless, trouble may appear even with a QCSCF solver. In this respect, we discuss what can go wrong, focusing on the multiple UHF solutions of ortho-benzyne.
2021
Nottoli, T.; Gauss, J.; Lipparini, F.
File in questo prodotto:
File Dimensione Formato  
MolPhys_QCSCF_postprint.pdf

Open Access dal 02/10/2022

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 3.07 MB
Formato Adobe PDF
3.07 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1109663
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact