Distributed multi-energy systems based on polygeneration, when compared with the traditional power plants, show significant primary energy savings and CO2 emissions reduction due to the high integration of mixed-energy sources and increased penetration of renewable energy sources. The high integration of these systems requires optimized master-planning and operating strategies for dealing with significant variability in the end-user demands (electricity, heating and cooling), with the intermittency of renewable energy source availability and integration of energy storage technologies for peak shaving operation. Many optimization variables characterize master-planning and optimal dispatch problems, and advanced algorithms are adopted to solve the calculations. In the paper, a new developed energy optimal planning software platform, the ©E-OPT, allows for simultaneously solving problems of master-planning and optimized operations with short computational time. The ©E-OPT novelty features rely on advanced performance maps modelling approach based on the extensive ©E-OPT database of commercially available components. The ©E-OPT software platform capabilities have been validated in a real case study in Singapore, allowing for the complete retrofitting of polygeneration systems in a district cooling arrangement in an industrial estate. In comparison with the design proposed by a well-established consulting firm, after having performed the validation step, the ©E-OPT software platform shows up to −30% in capital investment during the master-planning phase, and up to 12% in primary energy savings and 15% the CO2 pollutant emissions reduction, thanks to the optimized dispatch strategy.

The adoption of a planning tool software platform for optimized polygeneration design and operation – A district cooling application in South-East Asia

Desideri U.;
2021-01-01

Abstract

Distributed multi-energy systems based on polygeneration, when compared with the traditional power plants, show significant primary energy savings and CO2 emissions reduction due to the high integration of mixed-energy sources and increased penetration of renewable energy sources. The high integration of these systems requires optimized master-planning and operating strategies for dealing with significant variability in the end-user demands (electricity, heating and cooling), with the intermittency of renewable energy source availability and integration of energy storage technologies for peak shaving operation. Many optimization variables characterize master-planning and optimal dispatch problems, and advanced algorithms are adopted to solve the calculations. In the paper, a new developed energy optimal planning software platform, the ©E-OPT, allows for simultaneously solving problems of master-planning and optimized operations with short computational time. The ©E-OPT novelty features rely on advanced performance maps modelling approach based on the extensive ©E-OPT database of commercially available components. The ©E-OPT software platform capabilities have been validated in a real case study in Singapore, allowing for the complete retrofitting of polygeneration systems in a district cooling arrangement in an industrial estate. In comparison with the design proposed by a well-established consulting firm, after having performed the validation step, the ©E-OPT software platform shows up to −30% in capital investment during the master-planning phase, and up to 12% in primary energy savings and 15% the CO2 pollutant emissions reduction, thanks to the optimized dispatch strategy.
2021
Mazzoni, S.; Nastasi, B.; Ooi, S.; Desideri, U.; Comodi, G.; Romagnoli, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1112450
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact