In this study, the chemistry of air-drying artist's oil paint curing and aging up to 24 months was studied. The objective is to improve our molecular understating of the processes that lead to the conversion of the fluid binder into a dry film and how this evolves with time, which is at the base of a better comprehension of degradation phenomena of oil paintings and relevant to the artists' paint manufacturing industry. To this aim, a methodological approach based on thermogravimetric (TG) analysis, differential scanning calorimetry (DSC), gas chromatography-mass spectrometry (GC-MS), and analytical pyrolysis coupled with gas chromatography and mass spectrometry (Py-GC-MS) was implemented. Model paintings based on linseed oil and safflower oil (a drying and a semidrying oil, respectively) mixed with two historically relevant pigments - lead white (a through drier) and synthetic ultramarine blue (a pigment often encountered in degraded painting layers) - were investigated. The oil curing under accelerated conditions (80 °C under air flow) was followed by isothermal TG analysis. The oxygen uptake profiles were fit by a semiempiric equation that allowed to study the kinetics of the oil oxidation and estimate oxidative degradation. The DSC signal due to hydroperoxide decomposition and radical recombination was used to monitor the radical activity over time and to evaluate the stability of peroxides formed in the paint layers. GC-MS was performed at 7 and 24 months of natural aging to investigate the noncovalently cross-linked fractions and Py-GC-MS to characterize the whole organic fraction of the model paintings, including the cross-linked network. We show that the oil-pigment combination may have a strong influence on the relative degree of oxidation of the films formed with respect to its degree of cross-linking, which may be correlated with the literature on the stability of painting layers. Undocumented pathways of oxidation are also highlighted.

Oxidation and Cross-Linking in the Curing of Air-Drying Artists' Oil Paints

Pizzimenti S.
Primo
;
Bernazzani L.
Secondo
;
Tine M. R.;Duce C.
Penultimo
;
Bonaduce I.
Ultimo
2021-01-01

Abstract

In this study, the chemistry of air-drying artist's oil paint curing and aging up to 24 months was studied. The objective is to improve our molecular understating of the processes that lead to the conversion of the fluid binder into a dry film and how this evolves with time, which is at the base of a better comprehension of degradation phenomena of oil paintings and relevant to the artists' paint manufacturing industry. To this aim, a methodological approach based on thermogravimetric (TG) analysis, differential scanning calorimetry (DSC), gas chromatography-mass spectrometry (GC-MS), and analytical pyrolysis coupled with gas chromatography and mass spectrometry (Py-GC-MS) was implemented. Model paintings based on linseed oil and safflower oil (a drying and a semidrying oil, respectively) mixed with two historically relevant pigments - lead white (a through drier) and synthetic ultramarine blue (a pigment often encountered in degraded painting layers) - were investigated. The oil curing under accelerated conditions (80 °C under air flow) was followed by isothermal TG analysis. The oxygen uptake profiles were fit by a semiempiric equation that allowed to study the kinetics of the oil oxidation and estimate oxidative degradation. The DSC signal due to hydroperoxide decomposition and radical recombination was used to monitor the radical activity over time and to evaluate the stability of peroxides formed in the paint layers. GC-MS was performed at 7 and 24 months of natural aging to investigate the noncovalently cross-linked fractions and Py-GC-MS to characterize the whole organic fraction of the model paintings, including the cross-linked network. We show that the oil-pigment combination may have a strong influence on the relative degree of oxidation of the films formed with respect to its degree of cross-linking, which may be correlated with the literature on the stability of painting layers. Undocumented pathways of oxidation are also highlighted.
2021
Pizzimenti, S.; Bernazzani, L.; Tine, M. R.; Treil, V.; Duce, C.; Bonaduce, I.
File in questo prodotto:
File Dimensione Formato  
acsapm.0c01441.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 1.98 MB
Formato Adobe PDF
1.98 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1113736
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 32
social impact