The digital image correlation (DIC) was used in this paper to obtain full-field measurements of a target vibrating at a frequency higher than the maximum cameras’ frame rate. The down-sampling technique was implemented to compensate for the cameras’ moderate frame rate, thus getting an accurate displacement acquisition even at 6.5 kHz. Two innovative methods to support the DIC application were introduced. The use of fringe projection (or structured light), initially applied on the sample at rest, reduced the effort and time required for the stereo matching task's solution and improved this setting's accuracy and reliability. Additionally, a new time-domain image filtering was proposed and tested to improve the quality of the obtained DIC maps. In combination with the down-sampling, the effect of this filtering technique was tested in this work at (approx.) 2500 and 6500 Hz by measuring the response of a bladed disk to sinusoidal excitation. Evidence of improved results was observed for both frequencies for amplitudes in the range of 10 µm.

Low-speed cameras system for 3D-DIC vibration measurements in the kHz range

Neri P.
Primo
;
Paoli A.
Secondo
;
Razionale A. V.
Penultimo
;
Santus C.
Ultimo
2022-01-01

Abstract

The digital image correlation (DIC) was used in this paper to obtain full-field measurements of a target vibrating at a frequency higher than the maximum cameras’ frame rate. The down-sampling technique was implemented to compensate for the cameras’ moderate frame rate, thus getting an accurate displacement acquisition even at 6.5 kHz. Two innovative methods to support the DIC application were introduced. The use of fringe projection (or structured light), initially applied on the sample at rest, reduced the effort and time required for the stereo matching task's solution and improved this setting's accuracy and reliability. Additionally, a new time-domain image filtering was proposed and tested to improve the quality of the obtained DIC maps. In combination with the down-sampling, the effect of this filtering technique was tested in this work at (approx.) 2500 and 6500 Hz by measuring the response of a bladed disk to sinusoidal excitation. Evidence of improved results was observed for both frequencies for amplitudes in the range of 10 µm.
2022
Neri, P.; Paoli, A.; Razionale, A. V.; Santus, C.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1113891
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 22
social impact