We study the localization of sets with constant nonlocal mean curvature and prescribed small volume in a bounded open set, proving that they are sufficiently close to critical points of a suitable nonlocal potential. We then consider the fractional perimeter in half-spaces. We prove existence of minimizers under fixed volume constraint, and we show some properties such as smoothness and rotational symmetry.

On critical points of the relative fractional perimeter

Novaga M.;
2021-01-01

Abstract

We study the localization of sets with constant nonlocal mean curvature and prescribed small volume in a bounded open set, proving that they are sufficiently close to critical points of a suitable nonlocal potential. We then consider the fractional perimeter in half-spaces. We prove existence of minimizers under fixed volume constraint, and we show some properties such as smoothness and rotational symmetry.
2021
Malchiodi, A.; Novaga, M.; Pagliardini, D.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1114522
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact