We introduce a notion of uniform convergence for local and nonlocal curvatures. Then, we propose an abstract method to prove the convergence of the corresponding geometric flows, within the level set formulation. We apply such a general theory to characterize the limits of s-fractional mean curvature flows as (Formula presented.) and (Formula presented.) In analogy with the s-fractional mean curvature flows, we introduce the notion of s-Riesz curvature flows and characterize its limit as (Formula presented.) Eventually, we discuss the limit behavior as (Formula presented.) of the flow generated by a regularization of the r-Minkowski content.

Stability results for nonlocal geometric evolutions and limit cases for fractional mean curvature flows

Novaga M.;
2021-01-01

Abstract

We introduce a notion of uniform convergence for local and nonlocal curvatures. Then, we propose an abstract method to prove the convergence of the corresponding geometric flows, within the level set formulation. We apply such a general theory to characterize the limits of s-fractional mean curvature flows as (Formula presented.) and (Formula presented.) In analogy with the s-fractional mean curvature flows, we introduce the notion of s-Riesz curvature flows and characterize its limit as (Formula presented.) Eventually, we discuss the limit behavior as (Formula presented.) of the flow generated by a regularization of the r-Minkowski content.
2021
Cesaroni, A.; De Luca, L.; Novaga, M.; Ponsiglione, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1114552
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact