We consider the torsional rigidity and the principal eigenvalue related to the $p$-Laplace operator. The goal is to find upper and lower bounds to products of suitable powers of the quantities above in various classes of domains. The limit cases $p=1$ and $p=infty$ are also analyzed, which amount to consider the Cheeger constant of a domain and functionals involving the distance function from the boundary.

Inequalities between torsional rigidity and principal eigenvalue of the p-Laplacian

Luca Briani;Giuseppe Buttazzo;Francesca Prinari
2022-01-01

Abstract

We consider the torsional rigidity and the principal eigenvalue related to the $p$-Laplace operator. The goal is to find upper and lower bounds to products of suitable powers of the quantities above in various classes of domains. The limit cases $p=1$ and $p=infty$ are also analyzed, which amount to consider the Cheeger constant of a domain and functionals involving the distance function from the boundary.
2022
Briani, Luca; Buttazzo, Giuseppe; Prinari, Francesca
File in questo prodotto:
File Dimensione Formato  
calcvar.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 451.32 kB
Formato Adobe PDF
451.32 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1114793
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact