Let $E$ be an elliptic curve defined over a number field $K$, let $alpha in E(K)$ be a point of infinite order, and let $N^{-1}alpha$ be the set of $N$-division points of $alpha$ in $E(overline{K})$. We prove strong effective and uniform results for the degrees of the Kummer extensions $[K(E[N],N^{-1}alpha) : K(E[N])]$. When $K=mathbb Q$, and under a minimal (necessary) assumption on $alpha$, we show that the inequality $[mathbb Q(E[N],N^{-1}alpha) : mathbb Q(E[N])] geq cN^2$ holds for a positive constant $c$ independent of both $E$ and $alpha$.

Effective Kummer Theory for Elliptic Curves

Davide Lombardo;
2022-01-01

Abstract

Let $E$ be an elliptic curve defined over a number field $K$, let $alpha in E(K)$ be a point of infinite order, and let $N^{-1}alpha$ be the set of $N$-division points of $alpha$ in $E(overline{K})$. We prove strong effective and uniform results for the degrees of the Kummer extensions $[K(E[N],N^{-1}alpha) : K(E[N])]$. When $K=mathbb Q$, and under a minimal (necessary) assumption on $alpha$, we show that the inequality $[mathbb Q(E[N],N^{-1}alpha) : mathbb Q(E[N])] geq cN^2$ holds for a positive constant $c$ independent of both $E$ and $alpha$.
2022
Lombardo, Davide; Tronto, Sebastiano
File in questo prodotto:
File Dimensione Formato  
EffectiveKummerTheory2.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 764.79 kB
Formato Adobe PDF
764.79 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
explicit_open_image.pdf

accesso aperto

Descrizione: Versione finale
Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 432.29 kB
Formato Adobe PDF
432.29 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1115328
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact