Restoring tactile sensation is essential to enable in-hand manipulation and the smooth, natural control of upper-limb prosthetic devices. Here we present a platform to contribute to that long-term vision, combining an anthropomorphic robot hand (QB SoftHand) with a neuromorphic optical tactile sensor (neuroTac). Neuromorphic sensors aim to produce efficient, spike-based representations of information for bio-inspired processing. The development of this 5-fingered, sensorized hardware platform is validated with a customized mount allowing manual control of the hand. The platform is demonstrated to succesfully identify 4 objects from the YCB object set, and accurately discriminate between 4 directions of shear during stable grasps. This platform could lead to wide-ranging developments in the areas of haptics, prosthetics and telerobotics.
A miniaturised neuromorphic tactile sensor integrated with an anthropomorphic robot hand
Bianchi M.Conceptualization
;
2020-01-01
Abstract
Restoring tactile sensation is essential to enable in-hand manipulation and the smooth, natural control of upper-limb prosthetic devices. Here we present a platform to contribute to that long-term vision, combining an anthropomorphic robot hand (QB SoftHand) with a neuromorphic optical tactile sensor (neuroTac). Neuromorphic sensors aim to produce efficient, spike-based representations of information for bio-inspired processing. The development of this 5-fingered, sensorized hardware platform is validated with a customized mount allowing manual control of the hand. The platform is demonstrated to succesfully identify 4 objects from the YCB object set, and accurately discriminate between 4 directions of shear during stable grasps. This platform could lead to wide-ranging developments in the areas of haptics, prosthetics and telerobotics.File | Dimensione | Formato | |
---|---|---|---|
1490.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
5.08 MB
Formato
Adobe PDF
|
5.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.