Special nuclear materials hidden in shipping containers are extremely difficult to detect through their faint spontaneous emission of neutrons and photons. R&D efforts focus on active interrogation techniques, employing external beams of neutrons or high-energy X-rays to first trigger fission reactions and then detect prompt or delayed neutrons and/or photons. Our group created an active interrogation system based on detectors developed by Yale University and the University of Pisa. These detectors contain liquid droplets that vaporize when exposed to fast neutrons, but are insensitive to X-rays. The system was tested with an X-ray generator based on a 9 MeV electron LINAC available at an active interrogation facility. Copper is used as an X-ray production target at this facility, which prevents the production of photo-neutrons. With this system, we detected a sample of natural uranium either uncovered or shielded under heavy loads of wood or steel pipes. In order to interpret the experimental results, the response of our detector systems was assessed using Monte Carlo simulations with the code PHITS. Computational results are in good agreement with the experimental ones and open the way to simulations of real-world scenarios of interest to nonproliferation and homeland security, namely active interrogation at a standoff.

Simulation of an active interrogation system for the interdiction of special nuclear materials

d'Errico F.
2021-01-01

Abstract

Special nuclear materials hidden in shipping containers are extremely difficult to detect through their faint spontaneous emission of neutrons and photons. R&D efforts focus on active interrogation techniques, employing external beams of neutrons or high-energy X-rays to first trigger fission reactions and then detect prompt or delayed neutrons and/or photons. Our group created an active interrogation system based on detectors developed by Yale University and the University of Pisa. These detectors contain liquid droplets that vaporize when exposed to fast neutrons, but are insensitive to X-rays. The system was tested with an X-ray generator based on a 9 MeV electron LINAC available at an active interrogation facility. Copper is used as an X-ray production target at this facility, which prevents the production of photo-neutrons. With this system, we detected a sample of natural uranium either uncovered or shielded under heavy loads of wood or steel pipes. In order to interpret the experimental results, the response of our detector systems was assessed using Monte Carlo simulations with the code PHITS. Computational results are in good agreement with the experimental ones and open the way to simulations of real-world scenarios of interest to nonproliferation and homeland security, namely active interrogation at a standoff.
2021
Alves, A. V. S.; D'Errico, F.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1117382
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact