In [Duane, Garsia, Zabrocki 2013] the authors introduced a new dinv statistic, denoted ndinv, on the two part case of the shuffle conjecture (Haglund et al. 2005) in order to prove a compositional refinement. Though in [Hicks, Kim 2013] a non-recursive (but algorithmic) definition of ndinv has been given, this statistic still looks a bit unnatural. In this paper we "unveil the mystery" around the ndinv, by showing bijectively that the ndinv actually matches the usual dinv statistic in a special case of the generalized Delta conjecture in [Haglund, Remmel, Wilson 2018]. Moreover, we give also a non-compositional proof of the "ehh" case of the shuffle conjecture (after [Garsia, Xin, Zabrocki 2014]) by bijectively proving a relation with the two part case of the Delta conjecture.
The new dinv is not so new
D'Adderio Michele;Iraci Alessandro
2019-01-01
Abstract
In [Duane, Garsia, Zabrocki 2013] the authors introduced a new dinv statistic, denoted ndinv, on the two part case of the shuffle conjecture (Haglund et al. 2005) in order to prove a compositional refinement. Though in [Hicks, Kim 2013] a non-recursive (but algorithmic) definition of ndinv has been given, this statistic still looks a bit unnatural. In this paper we "unveil the mystery" around the ndinv, by showing bijectively that the ndinv actually matches the usual dinv statistic in a special case of the generalized Delta conjecture in [Haglund, Remmel, Wilson 2018]. Moreover, we give also a non-compositional proof of the "ehh" case of the shuffle conjecture (after [Garsia, Xin, Zabrocki 2014]) by bijectively proving a relation with the two part case of the Delta conjecture.| File | Dimensione | Formato | |
|---|---|---|---|
|
newdinvPUBLISHED.pdf
accesso aperto
Tipologia:
Versione finale editoriale
Licenza:
Creative commons
Dimensione
511.6 kB
Formato
Adobe PDF
|
511.6 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


