Frequency estimation of a single complex exponential signal embedded in additive white Gaussian noise is a major topic of research in many engineering areas. This work presents further investigations on this problem with regards to the fine estimation task, which is accomplished through a suitable interpolation of the discrete Fourier transform (DFT) coefficients of the observation data. The focus is on fast real-time applications, where iterative estimation methods can hardly be applied due to their latency and complexity. After deriving the analytical expression of the Cramér-Rao bound (CRB) for general values of the system parameters, we present a new DFT interpolation scheme based on the weighted least-squares (WLS) rule, where the optimum weights are precomputed through a numerical search and stored in the receiver. In contrast to many existing alternatives, the proposed method can employ an arbitrary number of DFT samples so as to achieve a good trade-off between system performance and complexity. Simulation results and theoretical analysis indicate that, at sufficiently high signal-to-noise ratios, the estimation accuracy is close to the relevant CRB at any value of the frequency error. This provides some advantage with respect to non-iterative competing schemes, without incurring any penalty in processing requirement.

Single-Tone Frequency Estimation by Weighted Least-Squares Interpolation of Fourier Coefficients

Morelli M.;Moretti M.;D'Amico A. A.
2022-01-01

Abstract

Frequency estimation of a single complex exponential signal embedded in additive white Gaussian noise is a major topic of research in many engineering areas. This work presents further investigations on this problem with regards to the fine estimation task, which is accomplished through a suitable interpolation of the discrete Fourier transform (DFT) coefficients of the observation data. The focus is on fast real-time applications, where iterative estimation methods can hardly be applied due to their latency and complexity. After deriving the analytical expression of the Cramér-Rao bound (CRB) for general values of the system parameters, we present a new DFT interpolation scheme based on the weighted least-squares (WLS) rule, where the optimum weights are precomputed through a numerical search and stored in the receiver. In contrast to many existing alternatives, the proposed method can employ an arbitrary number of DFT samples so as to achieve a good trade-off between system performance and complexity. Simulation results and theoretical analysis indicate that, at sufficiently high signal-to-noise ratios, the estimation accuracy is close to the relevant CRB at any value of the frequency error. This provides some advantage with respect to non-iterative competing schemes, without incurring any penalty in processing requirement.
2022
Morelli, M.; Moretti, M.; D'Amico, A. A.
File in questo prodotto:
File Dimensione Formato  
Paper_dc.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 465.92 kB
Formato Adobe PDF
465.92 kB Adobe PDF Visualizza/Apri
printedVersion.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 1.29 MB
Formato Adobe PDF
1.29 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1120295
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 10
social impact