In this paper, we analyze the electrostatic charge distribution on arbitrarily shaped conductor surfaces. Following a perturbative approach, we derive an approximate analytical formulation of the problem. We start from the known case of a conducting ellipsoid, we adopt a deformed ellipsoidal coordinate system, and we search for the zero-order approximated solution of the problem. We also focus on arbitrary-shaped thin foils, showing that the charge density is divergent on their borders. We then define the applicability range of the proposed approach expressing the contour equation as the Fourier series. Finally, we present a detailed error analysis for several polygonal contours, comparing the analytical results with those obtained via a numerical analysis based on the Finite Element Methods (FEM).

Perturbative approach for the analysis of charge distribution on arbitrarily shaped conductors

Gianluca Caposciutti;Bernardo Tellini
2021-01-01

Abstract

In this paper, we analyze the electrostatic charge distribution on arbitrarily shaped conductor surfaces. Following a perturbative approach, we derive an approximate analytical formulation of the problem. We start from the known case of a conducting ellipsoid, we adopt a deformed ellipsoidal coordinate system, and we search for the zero-order approximated solution of the problem. We also focus on arbitrary-shaped thin foils, showing that the charge density is divergent on their borders. We then define the applicability range of the proposed approach expressing the contour equation as the Fourier series. Finally, we present a detailed error analysis for several polygonal contours, comparing the analytical results with those obtained via a numerical analysis based on the Finite Element Methods (FEM).
2021
Bologna, Mauro; Caposciutti, Gianluca; Chandía, Kristopher J.; Tellini, Bernardo
File in questo prodotto:
File Dimensione Formato  
versione_pubblicata.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 3.65 MB
Formato Adobe PDF
3.65 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1120965
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact