Brain-Computer Interfaces (BCI) provide effective tools aimed at recognizing different brain activities, translate them into actions, and enable humans to directly communicate through them. In this context, the need for strong recognition performances results in increasingly sophisticated machine learning (ML) techniques, which may result in poor performance in a real application (e.g., limiting a real-time implementation). Here, we propose an ensemble approach to effectively balance between ML performance and computational costs in a BCI framework. The proposed model builds a classifier by combining different ML models (base-models) that are specialized to different classification sub-problems. More specifically, we employ this strategy with an ensemble-based architecture consisting of multi-layer perceptrons, and test its performance on a publicly available electroencephalography-based BCI dataset with four-class motor imagery tasks. Compared to previously proposed models tested on the same dataset, the proposed approach provides greater average classification performances and lower inter-subject variability.

Recognizing motor imagery tasks from EEG oscillations through a novel ensemble-based neural network architecture

Alfeo A. L.;Catrambone V.;Cimino M. G. C. A.;Vaglini G.;Valenza G.
2021-01-01

Abstract

Brain-Computer Interfaces (BCI) provide effective tools aimed at recognizing different brain activities, translate them into actions, and enable humans to directly communicate through them. In this context, the need for strong recognition performances results in increasingly sophisticated machine learning (ML) techniques, which may result in poor performance in a real application (e.g., limiting a real-time implementation). Here, we propose an ensemble approach to effectively balance between ML performance and computational costs in a BCI framework. The proposed model builds a classifier by combining different ML models (base-models) that are specialized to different classification sub-problems. More specifically, we employ this strategy with an ensemble-based architecture consisting of multi-layer perceptrons, and test its performance on a publicly available electroencephalography-based BCI dataset with four-class motor imagery tasks. Compared to previously proposed models tested on the same dataset, the proposed approach provides greater average classification performances and lower inter-subject variability.
2021
978-1-7281-1179-7
File in questo prodotto:
File Dimensione Formato  
EMBC_BCI FINAL.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1 MB
Formato Adobe PDF
1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1121484
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact