Proliferation of deployed sea-going autonomous platforms, such as autonomous underwater vehicles (AUVs), unmanned surface vehicles (USV), and sensor nodes anchored to the seabed, make the deployment of true underwater acoustic networks more and more feasible. An important feature of any network is the ability to synchronize the clocks of the participants, for the purpose of, e.g., time-slotted media access control (MAC) and navigation. Terrestrial clock synchronization protocols, such as the well-established network time protocol (NTP), are not readily applicable to underwater acoustic networks, because of long propagation times, low packet delivery success rates, communication ranges that vary over time in an unpredictable manner, and, in the presence of mobile nodes, the ad hoc nature of the composition of the network. This paper proposes a continuous estimation of internode clock offset and drift, based on the continuous exchange of modem packets, possibly containing transmission and reception timestamps. The proposed solution takes explicitly into account the limitations of the acoustic communication channel and network node mobility. This robust, opportunistic clock synchronization (ROCS) is robust against modem reset, and will work even if packet delivery success rates are not optimal or if no communication is possible for extended periods of time. Experimental results are given from the COLLaborative Asw Behaviours-Next Generation Autonomous Systems (COLLAB-NGAS14) campaign, held October 19-31, 2014, off the west coast of Italy. During the sea trial, the proposed clock synchronization algorithm was deployed and successfully tested within an underwater acoustic network composed of mobile and fixed nodes.

A Robust, Opportunistic Clock Synchronization Algorithm for Ad Hoc Underwater Acoustic Networks

Munafo' A.
2015-01-01

Abstract

Proliferation of deployed sea-going autonomous platforms, such as autonomous underwater vehicles (AUVs), unmanned surface vehicles (USV), and sensor nodes anchored to the seabed, make the deployment of true underwater acoustic networks more and more feasible. An important feature of any network is the ability to synchronize the clocks of the participants, for the purpose of, e.g., time-slotted media access control (MAC) and navigation. Terrestrial clock synchronization protocols, such as the well-established network time protocol (NTP), are not readily applicable to underwater acoustic networks, because of long propagation times, low packet delivery success rates, communication ranges that vary over time in an unpredictable manner, and, in the presence of mobile nodes, the ad hoc nature of the composition of the network. This paper proposes a continuous estimation of internode clock offset and drift, based on the continuous exchange of modem packets, possibly containing transmission and reception timestamps. The proposed solution takes explicitly into account the limitations of the acoustic communication channel and network node mobility. This robust, opportunistic clock synchronization (ROCS) is robust against modem reset, and will work even if packet delivery success rates are not optimal or if no communication is possible for extended periods of time. Experimental results are given from the COLLaborative Asw Behaviours-Next Generation Autonomous Systems (COLLAB-NGAS14) campaign, held October 19-31, 2014, off the west coast of Italy. During the sea trial, the proposed clock synchronization algorithm was deployed and successfully tested within an underwater acoustic network composed of mobile and fixed nodes.
2015
Vermeij, A.; Munafo', A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1125306
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 21
social impact