We demonstrate a graphene-MoS2 architecture integrating multiple field-effect transistors (FETs), and we independently probe and correlate the conducting properties of van der Waals coupled graphene-MoS2 contacts with those of the MoS2 channels. Devices are fabricated starting from high-quality single-crystal monolayers grown by chemical vapor deposition. The heterojunction was investigated by scanning Raman and photoluminescence spectroscopies. Moreover, transconductance curves of MoS2 are compared with the current-voltage characteristics of graphene contact stripes, revealing a significant suppression of transport on the n-side of the transconductance curve. On the basis of ab initio modeling, the effect is understood in terms of trapping by sulfur vacancies, which counterintuitively depends on the field effect, even though the graphene contact layer is positioned between the backgate and the MoS2 channel.

Unexpected Electron Transport Suppression in a Heterostructured Graphene-MoS2Multiple Field-Effect Transistor Architecture

Ciampalini G.
Primo
;
Menichetti G.;Buoni L.;Pitanti A.;Pisignano D.;Tredicucci A.
Penultimo
;
Roddaro S.
Ultimo
2022-01-01

Abstract

We demonstrate a graphene-MoS2 architecture integrating multiple field-effect transistors (FETs), and we independently probe and correlate the conducting properties of van der Waals coupled graphene-MoS2 contacts with those of the MoS2 channels. Devices are fabricated starting from high-quality single-crystal monolayers grown by chemical vapor deposition. The heterojunction was investigated by scanning Raman and photoluminescence spectroscopies. Moreover, transconductance curves of MoS2 are compared with the current-voltage characteristics of graphene contact stripes, revealing a significant suppression of transport on the n-side of the transconductance curve. On the basis of ab initio modeling, the effect is understood in terms of trapping by sulfur vacancies, which counterintuitively depends on the field effect, even though the graphene contact layer is positioned between the backgate and the MoS2 channel.
2022
Ciampalini, G.; Fabbri, F.; Menichetti, G.; Buoni, L.; Pace, S.; Miseikis, V.; Pitanti, A.; Pisignano, D.; Coletti, C.; Tredicucci, A.; Roddaro, S.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1125756
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 0
social impact