The rising demand for adaptive, cloud-based and AI-based systems is calling for an upgrade of the associated dependability concepts. That demands instantiation of dependability-orientated processes and methods to cover the whole life cycle. However, a common solution is not in sight yet That is especially evident for continuously learning AI and/or dynamic runtime-based approaches. This work focuses on engineering methods and design patterns that support the development of dependable AI-based autonomous systems. The emphasis on the human-centric aspect leverages users’ physiological, emotional, and cognitive state for the adaptation and optimisation of autonomous applications. We present the related body of knowledge of the TEACHING project and several automotive domain regulation activities and industrial working groups. We also consider the dependable architectural concepts and their applicability to different scenarios to ensure the dependability of evolving AI-based Cyber-Physical Systems of Systems (CPSoS) in the automotive domain. The paper shines the light on potential paths for dependable integration of AI-based systems into the automotive domain through identified analysis methods and targets.

Dependable Integration Concepts for Human-Centric AI-Based Systems

Bacciu D.;Dazzi P.;
2021-01-01

Abstract

The rising demand for adaptive, cloud-based and AI-based systems is calling for an upgrade of the associated dependability concepts. That demands instantiation of dependability-orientated processes and methods to cover the whole life cycle. However, a common solution is not in sight yet That is especially evident for continuously learning AI and/or dynamic runtime-based approaches. This work focuses on engineering methods and design patterns that support the development of dependable AI-based autonomous systems. The emphasis on the human-centric aspect leverages users’ physiological, emotional, and cognitive state for the adaptation and optimisation of autonomous applications. We present the related body of knowledge of the TEACHING project and several automotive domain regulation activities and industrial working groups. We also consider the dependable architectural concepts and their applicability to different scenarios to ensure the dependability of evolving AI-based Cyber-Physical Systems of Systems (CPSoS) in the automotive domain. The paper shines the light on potential paths for dependable integration of AI-based systems into the automotive domain through identified analysis methods and targets.
2021
978-3-030-83905-5
978-3-030-83906-2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1126480
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact