Novel BN-doped compounds based on chiral, tetrasubstituted [2.2]paracyclophane and NBN-benzo[f,g]tetracene were synthesized by Sonogashira–Hagihara coupling. Conjugated ethynyl linkers allow electronic communication between the π-electron systems through-bond, whereas through-space interactions are provided by strong π–π overlap between the pairs of NBN-building blocks. Excellent optical and chiroptical properties in racemic and enantiopure conditions were measured, with molar absorption coefficients up to ϵ=2.04×105 M−1 cm−1, fluorescence quantum yields up to ΦPL=0.70, and intense, mirror-image electronic circular dichroism and circularly polarized luminescence signals of the magnitude of 10−3 for the absorption and luminescence dissymmetry factors. Computed glum,calcd. values match the experimental ones. Electroanalytical data show both oxidation and reduction of the ethynyl-linked tetra-NBN-substituted paracyclophane, with an overlap of two redox processes for oxidation leading to a diradical dication.
Bright Luminescence by Combining Chiral [2.2]Paracyclophane with a Boron–Nitrogen-Doped Polyaromatic Hydrocarbon Building Block
Zinna F.;Di Bari L.;
2022-01-01
Abstract
Novel BN-doped compounds based on chiral, tetrasubstituted [2.2]paracyclophane and NBN-benzo[f,g]tetracene were synthesized by Sonogashira–Hagihara coupling. Conjugated ethynyl linkers allow electronic communication between the π-electron systems through-bond, whereas through-space interactions are provided by strong π–π overlap between the pairs of NBN-building blocks. Excellent optical and chiroptical properties in racemic and enantiopure conditions were measured, with molar absorption coefficients up to ϵ=2.04×105 M−1 cm−1, fluorescence quantum yields up to ΦPL=0.70, and intense, mirror-image electronic circular dichroism and circularly polarized luminescence signals of the magnitude of 10−3 for the absorption and luminescence dissymmetry factors. Computed glum,calcd. values match the experimental ones. Electroanalytical data show both oxidation and reduction of the ethynyl-linked tetra-NBN-substituted paracyclophane, with an overlap of two redox processes for oxidation leading to a diradical dication.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.