The massive and increasing availability of mobility data enables the study and the prediction of human mobility behavior and activities at various levels. In this paper, we tackle the problem of predicting the crash risk of a car driver in the long term. This is a very challenging task, requiring a deep knowledge of both the driver and their surroundings, yet it has several useful applications to public safety (e.g. by coaching high-risk drivers) and the insurance market (e.g. by adapting pricing to risk). We model each user with a data-driven approach based on a network representation of users’ mobility. In addition, we represent the areas in which users moves through the definition of a wide set of city indicators that capture different aspects of the city. These indicators are based on human mobility and are automatically computed from a set of different data sources, including mobility traces and road networks. Through these city indicators we develop a geographical transfer learning approach for the crash risk task such that we can build effective predictive models for another area where labeled data is not available. Empirical results over real datasets show the superiority of our solution.

City indicators for geographical transfer learning: an application to crash prediction

Mirco Nanni
Primo
;
Riccardo Guidotti
Secondo
;
2022-01-01

Abstract

The massive and increasing availability of mobility data enables the study and the prediction of human mobility behavior and activities at various levels. In this paper, we tackle the problem of predicting the crash risk of a car driver in the long term. This is a very challenging task, requiring a deep knowledge of both the driver and their surroundings, yet it has several useful applications to public safety (e.g. by coaching high-risk drivers) and the insurance market (e.g. by adapting pricing to risk). We model each user with a data-driven approach based on a network representation of users’ mobility. In addition, we represent the areas in which users moves through the definition of a wide set of city indicators that capture different aspects of the city. These indicators are based on human mobility and are automatically computed from a set of different data sources, including mobility traces and road networks. Through these city indicators we develop a geographical transfer learning approach for the crash risk task such that we can build effective predictive models for another area where labeled data is not available. Empirical results over real datasets show the superiority of our solution.
2022
Nanni, Mirco; Guidotti, Riccardo; Bonavita, Agnese; Isfahani Alamdari, Omid
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1134326
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact