We explore charge and spin transport properties of bilayer CrI3 controlled by an external electric field. To this aim, we focus on two different device structures, namely ML-source/BL-channel/ML-drain CrI3 and BL-source/BL-channel/BL-drain CrI3, where ML and BL stand for monolayer and bilayer crystals respectively. The electric field is only applied to the central BL-channel of the structure. In the first device, we inject only a single spin from the ferromagnetic ML CrI3 which allows us to study the effect of the electric field in the spin transport properties, i.e. the operation of a spin transistor. The second structure is based on the injection of both spins, that are later filtered by electrically mediated spin-splitting effects, resulting in spin-filter device.
Electric-field controlled spin transport in bilayer CrI3
Damiano Marian;David Soriano;Giuseppe Iannaccone;Gianluca Fiori
2021-01-01
Abstract
We explore charge and spin transport properties of bilayer CrI3 controlled by an external electric field. To this aim, we focus on two different device structures, namely ML-source/BL-channel/ML-drain CrI3 and BL-source/BL-channel/BL-drain CrI3, where ML and BL stand for monolayer and bilayer crystals respectively. The electric field is only applied to the central BL-channel of the structure. In the first device, we inject only a single spin from the ferromagnetic ML CrI3 which allows us to study the effect of the electric field in the spin transport properties, i.e. the operation of a spin transistor. The second structure is based on the injection of both spins, that are later filtered by electrically mediated spin-splitting effects, resulting in spin-filter device.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.