The molecular mechanisms by which a few molecules of the long non-coding RNA Xist silence genes on the entire X chromosome are poorly understood. New evidence suggests that dimeric foci of Xist seed the formation of large protein assemblies that contain a wide spectrum of proteins, such as SPEN (SHARP), CIZ1, CELF, PTBP1 and components of Polycomb repressive complexes 1 and 2. These assemblies, each of which may contain hundreds to thousands of molecules of proteins, extend spatially beyond each focus of Xist, which explains how this long non-coding RNA triggers silencing across an entire chromosome.
Phase separation drives X-chromosome inactivation
andrea cerase
2022-01-01
Abstract
The molecular mechanisms by which a few molecules of the long non-coding RNA Xist silence genes on the entire X chromosome are poorly understood. New evidence suggests that dimeric foci of Xist seed the formation of large protein assemblies that contain a wide spectrum of proteins, such as SPEN (SHARP), CIZ1, CELF, PTBP1 and components of Polycomb repressive complexes 1 and 2. These assemblies, each of which may contain hundreds to thousands of molecules of proteins, extend spatially beyond each focus of Xist, which explains how this long non-coding RNA triggers silencing across an entire chromosome.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.