Long-term disability caused by stroke is largely due to an impairment of motor function. The functional consequences after stroke are caused by central nervous system adaptations and modifications, but also by the peripheral skeletal muscle changes. The nervous and muscular systems work together and are strictly dependent in their structure and function, through afferent and efferent communication pathways with a reciprocal “modulation.” Knowing how altered interaction between these two important systems can modify the intrinsic properties of muscle tissue is essential in finding the best rehabilitative therapeutic approach. Traditionally, the rehabilitation effort has been oriented toward the treatment of the central nervous system damage with a central approach, overlooking the muscle tissue. However, to ensure greater effectiveness of treatments, it should not be forgotten that muscle can also be a target in the rehabilitation process. The purpose of this review is to summarize the current knowledge about the skeletal muscle changes, directly or indirectly induced by stroke, focusing on the changes induced by the treatments most applied in stroke rehabilitation. The results of this review highlight changes in several muscular features, suggesting specific treatments based on biological knowledge; on the other hand, in standard rehabilitative practice, a realist muscle function evaluation is rarely carried out. We provide some recommendations to improve a comprehensive muscle investigation, a specific rehabilitation approach, and to draw research protocol to solve the remaining conflicting data. Even if a complete multilevel muscular evaluation requires a great effort by a multidisciplinary team to optimize motor recovery after stroke.
How Does Stroke Affect Skeletal Muscle? State of the Art and Rehabilitation Perspective
Azzollini V.
Primo
;Chisari C.Ultimo
2021-01-01
Abstract
Long-term disability caused by stroke is largely due to an impairment of motor function. The functional consequences after stroke are caused by central nervous system adaptations and modifications, but also by the peripheral skeletal muscle changes. The nervous and muscular systems work together and are strictly dependent in their structure and function, through afferent and efferent communication pathways with a reciprocal “modulation.” Knowing how altered interaction between these two important systems can modify the intrinsic properties of muscle tissue is essential in finding the best rehabilitative therapeutic approach. Traditionally, the rehabilitation effort has been oriented toward the treatment of the central nervous system damage with a central approach, overlooking the muscle tissue. However, to ensure greater effectiveness of treatments, it should not be forgotten that muscle can also be a target in the rehabilitation process. The purpose of this review is to summarize the current knowledge about the skeletal muscle changes, directly or indirectly induced by stroke, focusing on the changes induced by the treatments most applied in stroke rehabilitation. The results of this review highlight changes in several muscular features, suggesting specific treatments based on biological knowledge; on the other hand, in standard rehabilitative practice, a realist muscle function evaluation is rarely carried out. We provide some recommendations to improve a comprehensive muscle investigation, a specific rehabilitation approach, and to draw research protocol to solve the remaining conflicting data. Even if a complete multilevel muscular evaluation requires a great effort by a multidisciplinary team to optimize motor recovery after stroke.File | Dimensione | Formato | |
---|---|---|---|
fneur-12-797559 (1).pdf
accesso aperto
Tipologia:
Versione finale editoriale
Licenza:
Creative commons
Dimensione
223.12 kB
Formato
Adobe PDF
|
223.12 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.