The oxidation of the sulfide function promoted by a variety of vanadium compounds has been largely explored, whereas the use of homogeneous catalytic systems based on the heavier group 5 metals remains less explored. We report the use of easily available niobium and tantalum carbamates, i.e. [M(O2CNMe2)5] (M = Nb, 1; M = Ta, 2), [Nb(O2CNMe2)4], 3, [NbO(O2CNEt2)3], 4, and [NbCl3(O2CNEt2)2], 5, as effective catalysts for the conversion of a series of alkyl aryl and aromatic sulfides into the corresponding sulfones. NMR investigations on the performant niobium catalyst 4 unexpectedly revealed the substantial stability of this compound in the protic catalytic environment, and a plausible catalytic cycle was obtained by DFT studies. The two active catalytic species, i.e. 4 and its minor mono-methoxide derivative, presumably interconvert to each other exploiting the versatile coordination of the carbamato ligand.

Niobium(V) oxido tris-carbamate as easily available and robust catalytic precursor for the selective sulfide to sulfone oxidation

Ciancaleoni G.
;
Pampaloni G.;Marchetti F.
;
2021-01-01

Abstract

The oxidation of the sulfide function promoted by a variety of vanadium compounds has been largely explored, whereas the use of homogeneous catalytic systems based on the heavier group 5 metals remains less explored. We report the use of easily available niobium and tantalum carbamates, i.e. [M(O2CNMe2)5] (M = Nb, 1; M = Ta, 2), [Nb(O2CNMe2)4], 3, [NbO(O2CNEt2)3], 4, and [NbCl3(O2CNEt2)2], 5, as effective catalysts for the conversion of a series of alkyl aryl and aromatic sulfides into the corresponding sulfones. NMR investigations on the performant niobium catalyst 4 unexpectedly revealed the substantial stability of this compound in the protic catalytic environment, and a plausible catalytic cycle was obtained by DFT studies. The two active catalytic species, i.e. 4 and its minor mono-methoxide derivative, presumably interconvert to each other exploiting the versatile coordination of the carbamato ligand.
2021
Bresciani, G.; Gemmiti, M.; Ciancaleoni, G.; Pampaloni, G.; Marchetti, F.; Crucianelli, M.
File in questo prodotto:
File Dimensione Formato  
Article-Crucianelli-revised.pdf

Open Access dal 02/11/2023

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.35 MB
Formato Adobe PDF
1.35 MB Adobe PDF Visualizza/Apri
1-s2.0-S2468823121005897-main.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1140020
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact