The purpose of this study was to investigate the effect of image preprocessing on radiomic features estimation from computed tomography (CT) imaging of locally advanced rectal cancer (LARC). CT images of 20 patients with LARC were used to estimate 105 radiomic features of 7 classes (shape, first-order, GLCM, GLDM, GLRLM, GLSZM, and NGTDM). Radiomic features were estimated for 6 different isotropic resampling voxel sizes, using 10 interpolation algorithms (at fixed bin width) and 6 different bin widths (at fixed interpolation algorithm). The intraclass correlation coefficient (ICC) and the coefficient of variation (CV) were calculated to assess the variability in radiomic features estimation due to preprocessing. A repeated measures correlation analysis was performed to assess any linear correlation between radiomic feature estimate and resampling voxel size or bin width. Reproducibility of radiomic feature estimate, when assessed through ICC analysis, was nominally excellent (ICC>0.9) for shape features, good (0.75

Radiomics of Patients with Locally Advanced Rectal Cancer: Effect of Preprocessing on Features Estimation from Computed Tomography Imaging

Linsalata S.;Borgheresi R.;Marfisi D.;Barca P.;Paiar F.;
2022-01-01

Abstract

The purpose of this study was to investigate the effect of image preprocessing on radiomic features estimation from computed tomography (CT) imaging of locally advanced rectal cancer (LARC). CT images of 20 patients with LARC were used to estimate 105 radiomic features of 7 classes (shape, first-order, GLCM, GLDM, GLRLM, GLSZM, and NGTDM). Radiomic features were estimated for 6 different isotropic resampling voxel sizes, using 10 interpolation algorithms (at fixed bin width) and 6 different bin widths (at fixed interpolation algorithm). The intraclass correlation coefficient (ICC) and the coefficient of variation (CV) were calculated to assess the variability in radiomic features estimation due to preprocessing. A repeated measures correlation analysis was performed to assess any linear correlation between radiomic feature estimate and resampling voxel size or bin width. Reproducibility of radiomic feature estimate, when assessed through ICC analysis, was nominally excellent (ICC>0.9) for shape features, good (0.75
2022
Linsalata, S.; Borgheresi, R.; Marfisi, D.; Barca, P.; Sainato, A.; Paiar, F.; Neri, E.; Traino, A. C.; Giannelli, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1141552
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact