Protein-polymer conjugates are a promising class of biohybrids. In this work, the dynamics of a set of biodegradable conjugates myoglobin-poly(ethyl ethylene phosphate) (My-PEEP) with variations in the number of attached polymers and their molar mass in the dry-state, have been investigated to understand the role of polymer on protein dynamics. We performed Differential Scanning Calorimetry measurements between 190 and 300 K, observing the large-scale dynamics arising from reorganization of conformational states, i.e. within the 100 s timescale. The application of an annealing time during the cooling scans was used to investigate the non-equilibrium glassy-state of the samples, observing the relaxation enthalpy at different annealing temperatures. This procedure permitted to extensively describe the transition broadness and the system relaxation kinetics in the glassy state. The samples show an experimental behaviour different from the theoretical predictions, suggesting the establishment of interactions among the protein and the polymer chains. The different behaviour of the conjugates and the physical mixture (composed of the protein and the polymer physically mixed) highlighted the importance of the covalent bond in defining the system dynamics.
Unfreezing of molecular motions in protein-polymer conjugates: a calorimetric study
Pelosi, C.
Primo
;Tiné, M. R.Ultimo
2022-01-01
Abstract
Protein-polymer conjugates are a promising class of biohybrids. In this work, the dynamics of a set of biodegradable conjugates myoglobin-poly(ethyl ethylene phosphate) (My-PEEP) with variations in the number of attached polymers and their molar mass in the dry-state, have been investigated to understand the role of polymer on protein dynamics. We performed Differential Scanning Calorimetry measurements between 190 and 300 K, observing the large-scale dynamics arising from reorganization of conformational states, i.e. within the 100 s timescale. The application of an annealing time during the cooling scans was used to investigate the non-equilibrium glassy-state of the samples, observing the relaxation enthalpy at different annealing temperatures. This procedure permitted to extensively describe the transition broadness and the system relaxation kinetics in the glassy state. The samples show an experimental behaviour different from the theoretical predictions, suggesting the establishment of interactions among the protein and the polymer chains. The different behaviour of the conjugates and the physical mixture (composed of the protein and the polymer physically mixed) highlighted the importance of the covalent bond in defining the system dynamics.File | Dimensione | Formato | |
---|---|---|---|
2022_JTAC_Pelosi et al.pdf
accesso aperto
Tipologia:
Versione finale editoriale
Licenza:
Creative commons
Dimensione
1.05 MB
Formato
Adobe PDF
|
1.05 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.