Wireless networks have drastically influenced our lifestyle, changing our workplaces and society. Among the variety of wireless technology, Wi-Fi surely plays a leading role, especially in local area networks. The spread of mobiles and tablets, and more recently, the advent of Internet of Things, have resulted in a multitude of Wi-Fi-enabled devices continuously sending data to the Internet and between each other. At the same time, Machine Learning has proven to be one of the most effective and versatile tools for the analysis of fast streaming data. This systematic review aims at studying the interaction between these technologies and how it has developed throughout their lifetimes. We used Scopus, Web of Science, and IEEE Xplore databases to retrieve paper abstracts and leveraged a topic modeling technique, namely, BERTopic, to analyze the resulting document corpus. After these steps, we inspected the obtained clusters and computed statistics to characterize and interpret the topics they refer to. Our results include both the applications of Wi-Fi sensing and the variety of Machine Learning algorithms used to tackle them. We also report how the Wi-Fi advances have affected sensing applications and the choice of the most suitable Machine Learning models.

A Systematic Review of Wi-Fi and Machine Learning Integration with Topic Modeling Techniques

Atzeni D.
;
Bacciu D.;Mazzei D.;Prencipe G.
2022-01-01

Abstract

Wireless networks have drastically influenced our lifestyle, changing our workplaces and society. Among the variety of wireless technology, Wi-Fi surely plays a leading role, especially in local area networks. The spread of mobiles and tablets, and more recently, the advent of Internet of Things, have resulted in a multitude of Wi-Fi-enabled devices continuously sending data to the Internet and between each other. At the same time, Machine Learning has proven to be one of the most effective and versatile tools for the analysis of fast streaming data. This systematic review aims at studying the interaction between these technologies and how it has developed throughout their lifetimes. We used Scopus, Web of Science, and IEEE Xplore databases to retrieve paper abstracts and leveraged a topic modeling technique, namely, BERTopic, to analyze the resulting document corpus. After these steps, we inspected the obtained clusters and computed statistics to characterize and interpret the topics they refer to. Our results include both the applications of Wi-Fi sensing and the variety of Machine Learning algorithms used to tackle them. We also report how the Wi-Fi advances have affected sensing applications and the choice of the most suitable Machine Learning models.
2022
Atzeni, D.; Bacciu, D.; Mazzei, D.; Prencipe, G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1150525
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact