The rate of introduction of man-made habitats in coastal environments is growing at an unprecedented pace, as a consequence of the expansion of urban areas. Floating installations, due to their unique hydrodynamic features, are able to provide great opportunities for enhancing water detoxification through the use of sessile, filtering organisms. We assessed whether the application of sponges to floating pontoons could function as a tool for biomonitoring organic and inorganic pollutants and for improving water quality inside a moderately contaminated marina in the NW Mediterranean. Fragments of two common Mediterranean sponges (Petrosia (Petrosia) ficiformis and Ircinia oros) were fixed to either suspended natural fibre nets beneath a floating pontoon or to metal frames deployed on the sea bottom. We assessed the accumulation of organic and inorganic contaminants in sponge fragments and, in order to provide an insight into their health status, we examined changes in their metabolic and oxidative stress responses and associated microbiomes. Fragments of both sponge species filtered out pollutants from seawater on both support types, but generally showed a better physiological and metabolic status when fixed to nets underneath the pontoon than to bottom frames. P. (P) ficiformis maintained a more efficient metabolism and exhibited a lower physiological stress levels and higher stability of the associated microbiome in comparison with I. oros. Our study suggests that the application of sponges to floating pontoon represents a promising nature-based solution to improve the ecological value of urban environments.

Adding functions to marine infrastructure: Pollutant accumulation, physiological and microbiome changes in sponges attached to floating pontoons inside marinas

Bulleri, Fabio
Primo
;
Pretti, Carlo;Sicurelli, Doriana;Vannini, Claudia;Verani, Marco;Federigi, Ileana;De Marchi, Lucia
2022-01-01

Abstract

The rate of introduction of man-made habitats in coastal environments is growing at an unprecedented pace, as a consequence of the expansion of urban areas. Floating installations, due to their unique hydrodynamic features, are able to provide great opportunities for enhancing water detoxification through the use of sessile, filtering organisms. We assessed whether the application of sponges to floating pontoons could function as a tool for biomonitoring organic and inorganic pollutants and for improving water quality inside a moderately contaminated marina in the NW Mediterranean. Fragments of two common Mediterranean sponges (Petrosia (Petrosia) ficiformis and Ircinia oros) were fixed to either suspended natural fibre nets beneath a floating pontoon or to metal frames deployed on the sea bottom. We assessed the accumulation of organic and inorganic contaminants in sponge fragments and, in order to provide an insight into their health status, we examined changes in their metabolic and oxidative stress responses and associated microbiomes. Fragments of both sponge species filtered out pollutants from seawater on both support types, but generally showed a better physiological and metabolic status when fixed to nets underneath the pontoon than to bottom frames. P. (P) ficiformis maintained a more efficient metabolism and exhibited a lower physiological stress levels and higher stability of the associated microbiome in comparison with I. oros. Our study suggests that the application of sponges to floating pontoon represents a promising nature-based solution to improve the ecological value of urban environments.
2022
Bulleri, Fabio; Pretti, Carlo; Bertolino, Marco; Magri, Michele; Pittaluga, Gianluca Bontà; Sicurelli, Doriana; Tardelli, Federica; Manzini, Chiara; V...espandi
File in questo prodotto:
File Dimensione Formato  
Spugne 2022 Bulleri et al..pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 1.94 MB
Formato Adobe PDF
1.94 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1152379
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact