We prove polynomial upper bounds on the growth of solutions to the 2d cubic nonlinear Schrödinger equation where the Laplacian is confined by the harmonic potential. Due to better bilinear effects, our bounds improve on those available for the 2d cubic nonlinear Schrödinger equation in the periodic setting: our growth rate for a Sobolev norm of order s is t2(s−1)/3+ε, for s=2k and k≥1 integer. In the appendix we provide a direct proof, based on integration by parts, of bilinear estimates associated with the harmonic oscillator.

Growth of Sobolev norms for $2d$ NLS with harmonic potential

Visciglia, Nicola
2022-01-01

Abstract

We prove polynomial upper bounds on the growth of solutions to the 2d cubic nonlinear Schrödinger equation where the Laplacian is confined by the harmonic potential. Due to better bilinear effects, our bounds improve on those available for the 2d cubic nonlinear Schrödinger equation in the periodic setting: our growth rate for a Sobolev norm of order s is t2(s−1)/3+ε, for s=2k and k≥1 integer. In the appendix we provide a direct proof, based on integration by parts, of bilinear estimates associated with the harmonic oscillator.
2022
Planchon, Fabrice; Tzvetkov, Nikolay; Visciglia, Nicola
File in questo prodotto:
File Dimensione Formato  
10.4171-rmi-1371.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 546.59 kB
Formato Adobe PDF
546.59 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1156138
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact