We study the existence of ground state standing waves, of prescribed mass, for the nonlinear Schrödinger equation with mixed power nonlinearities i∂tv+Δv+μv|v|q−2+v|v|2javax.xml.bind.JAXBElement@500a707a−2=0,(t,x)∈R×RN, where N≥3, v:R×RN→C, μ>0, 2<2+4/N and 2⁎=2N/(N−2) is the critical Sobolev exponent. We show that all ground states correspond to local minima of the associated Energy functional. Next, despite the fact that the nonlinearity is Sobolev critical, we show that the set of ground states is orbitally stable. Our results settle a question raised by N. Soave [35].
Orbital stability of ground states for a Sobolev critical Schrödinger equation
Visciglia N.
2022-01-01
Abstract
We study the existence of ground state standing waves, of prescribed mass, for the nonlinear Schrödinger equation with mixed power nonlinearities i∂tv+Δv+μv|v|q−2+v|v|2javax.xml.bind.JAXBElement@500a707a−2=0,(t,x)∈R×RN, where N≥3, v:R×RN→C, μ>0, 2<2+4/N and 2⁎=2N/(N−2) is the critical Sobolev exponent. We show that all ground states correspond to local minima of the associated Energy functional. Next, despite the fact that the nonlinearity is Sobolev critical, we show that the set of ground states is orbitally stable. Our results settle a question raised by N. Soave [35].File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
JMPAJJTV.pdf
non disponibili
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - accesso privato/ristretto
Dimensione
494.51 kB
Formato
Adobe PDF
|
494.51 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
Manuscript-JMPA-revised.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
242.69 kB
Formato
Adobe PDF
|
242.69 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


