We study the existence of ground state standing waves, of prescribed mass, for the nonlinear Schrödinger equation with mixed power nonlinearities i∂tv+Δv+μv|v|q−2+v|v|2javax.xml.bind.JAXBElement@500a707a−2=0,(t,x)∈R×RN, where N≥3, v:R×RN→C, μ>0, 2<2+4/N and 2⁎=2N/(N−2) is the critical Sobolev exponent. We show that all ground states correspond to local minima of the associated Energy functional. Next, despite the fact that the nonlinearity is Sobolev critical, we show that the set of ground states is orbitally stable. Our results settle a question raised by N. Soave [35].

Orbital stability of ground states for a Sobolev critical Schrödinger equation

Visciglia N.
2022-01-01

Abstract

We study the existence of ground state standing waves, of prescribed mass, for the nonlinear Schrödinger equation with mixed power nonlinearities i∂tv+Δv+μv|v|q−2+v|v|2javax.xml.bind.JAXBElement@500a707a−2=0,(t,x)∈R×RN, where N≥3, v:R×RN→C, μ>0, 2<2+4/N and 2⁎=2N/(N−2) is the critical Sobolev exponent. We show that all ground states correspond to local minima of the associated Energy functional. Next, despite the fact that the nonlinearity is Sobolev critical, we show that the set of ground states is orbitally stable. Our results settle a question raised by N. Soave [35].
2022
Jeanjean, L.; Jendrej, J.; Le, T. T.; Visciglia, N.
File in questo prodotto:
File Dimensione Formato  
JMPAJJTV.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 494.51 kB
Formato Adobe PDF
494.51 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Manuscript-JMPA-revised.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 242.69 kB
Formato Adobe PDF
242.69 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1156201
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 94
  • ???jsp.display-item.citation.isi??? 77
social impact