For a given metric measure space (X, d, mu) we consider finite samples of points, calculate the matrix of distances between them and then reconstruct the points in some finite-dimensional space using the multidimensional scaling (MDS) algorithm with this distance matrix as an input. We show that this procedure gives a natural limit as the number of points in the samples grows to infinity and the density of points approaches the measure mu. This limit can be viewed as "infinite MDS" embedding of the original space, now not anymore into a finite-dimensional space but rather into an infinitedimensional Hilbert space. We further show that this embedding is stable with respect to the natural convergence of metric measure spaces. However, contrary to what is usually believed in applications, we show that in many cases it does not preserve distances, nor is even bi-Lipschitz, but may provide snowflake (Assouad-type) embeddings of the original space to a Hilbert space (this is, for instance, the case of a sphere and a flat torus equipped with their geodesic distances).

Infinite multidimensional scaling for metric measure spaces

Trevisan, D.
2022-01-01

Abstract

For a given metric measure space (X, d, mu) we consider finite samples of points, calculate the matrix of distances between them and then reconstruct the points in some finite-dimensional space using the multidimensional scaling (MDS) algorithm with this distance matrix as an input. We show that this procedure gives a natural limit as the number of points in the samples grows to infinity and the density of points approaches the measure mu. This limit can be viewed as "infinite MDS" embedding of the original space, now not anymore into a finite-dimensional space but rather into an infinitedimensional Hilbert space. We further show that this embedding is stable with respect to the natural convergence of metric measure spaces. However, contrary to what is usually believed in applications, we show that in many cases it does not preserve distances, nor is even bi-Lipschitz, but may provide snowflake (Assouad-type) embeddings of the original space to a Hilbert space (this is, for instance, the case of a sphere and a flat torus equipped with their geodesic distances).
2022
Kroshnin, A.; Stepanov, E.; Trevisan, D.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1156206
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact