We study the validity of an extension of Frobenius theorem on integral manifolds for some classes of Pfaff-type systems of partial differential equations involving multidimensional “rough” signals, i.e. “differentials” of given Hölder continuous functions interpreted in a suitable way, similarly to Young Differential Equations in Rough Paths theory. This can be seen as a tool to study solvability of exterior differential systems involving rough differential forms, i.e. the forms involving weak (distributional) derivatives of highly irregular (e.g. Hölder continuous) functions; the solutions (integral manifolds) being also some very weakly regular geometric structures.

On exterior differential systems involving differentials of Hölder functions

Stepanov, Evgeny
;
Trevisan, Dario
2022-01-01

Abstract

We study the validity of an extension of Frobenius theorem on integral manifolds for some classes of Pfaff-type systems of partial differential equations involving multidimensional “rough” signals, i.e. “differentials” of given Hölder continuous functions interpreted in a suitable way, similarly to Young Differential Equations in Rough Paths theory. This can be seen as a tool to study solvability of exterior differential systems involving rough differential forms, i.e. the forms involving weak (distributional) derivatives of highly irregular (e.g. Hölder continuous) functions; the solutions (integral manifolds) being also some very weakly regular geometric structures.
2022
Stepanov, Evgeny; Trevisan, Dario
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0022039622004557-main.pdf

non disponibili

Descrizione: versione finale
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 566.71 kB
Formato Adobe PDF
566.71 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
frobenius-zust2.pdf

accesso aperto

Descrizione: post-print
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 549.25 kB
Formato Adobe PDF
549.25 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1156207
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact