Electroencephalography (EEG) microstates analysis provides a sequence of topographies representing the scalp-related electric field over time, and each microstate is synthetically represented by a symbol. Despite recent advances on functional brain-heart interplay (BHI) assessment, to our knowledge no methodology takes EEG microstates into account to relate the causal heartbeat dynamics. Moreover, standard BHI methods are tailored to a single EEG-channel analysis, neglecting the comprehensive information associated with a multichannel cluster or a whole-brain activity. To overcome these limitations, we devised a novel methodological frame-work for the assessment of functional BHI that exploits the symbolic representation of both EEG microstates and heart rate variability (HRV) series. Directional BHI quantification is then performed through Kullback-Leibler Divergence (KLD) and Transfer Entropy. The proposed methodology is here preliminarily tested on a dataset gathered from healthy subjects undergoing a resting state and a mental arithmetic task. Except for the KLD in the from-brain-to-heart direction, all other estimates showed significant differences between the two experimental conditions. We conclude that the proposed frame-work may promisingly provide novel insights on brain-heart phenomena through a whole-brain symbolic representation.
Causal Symbolic Information Transfer for the Assessment of functional Brain-Heart Interplay through EEG Microstates Occurrences: a proof-of-concept study
Catrambone V.;Valenza G.
2022-01-01
Abstract
Electroencephalography (EEG) microstates analysis provides a sequence of topographies representing the scalp-related electric field over time, and each microstate is synthetically represented by a symbol. Despite recent advances on functional brain-heart interplay (BHI) assessment, to our knowledge no methodology takes EEG microstates into account to relate the causal heartbeat dynamics. Moreover, standard BHI methods are tailored to a single EEG-channel analysis, neglecting the comprehensive information associated with a multichannel cluster or a whole-brain activity. To overcome these limitations, we devised a novel methodological frame-work for the assessment of functional BHI that exploits the symbolic representation of both EEG microstates and heart rate variability (HRV) series. Directional BHI quantification is then performed through Kullback-Leibler Divergence (KLD) and Transfer Entropy. The proposed methodology is here preliminarily tested on a dataset gathered from healthy subjects undergoing a resting state and a mental arithmetic task. Except for the KLD in the from-brain-to-heart direction, all other estimates showed significant differences between the two experimental conditions. We conclude that the proposed frame-work may promisingly provide novel insights on brain-heart phenomena through a whole-brain symbolic representation.File | Dimensione | Formato | |
---|---|---|---|
Causal_Symbolic_Information_Transfer.pdf
non disponibili
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - accesso privato/ristretto
Dimensione
1.87 MB
Formato
Adobe PDF
|
1.87 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.