Objective. Monolithic scintillator crystals coupled to silicon photomultiplier (SiPM) arrays are promising detectors for PET applications, offering spatial resolution around 1 mm and depth-of-interaction information. However, their timing resolution has always been inferior to that of pixellated crystals, while the best results on spatial resolution have been obtained with algorithms that cannot operate in real-time in a PET detector. In this study, we explore the capabilities of monolithic crystals with respect to spatial and timing resolution, presenting new algorithms that overcome the mentioned problems. Approach. Our algorithms were tested first using a simulation framework, then on experimentally acquired data. We tested an event timestamping algorithm based on neural networks which was then integrated into a second neural network for simultaneous estimation of the event position and timestamp. Both algorithms are implemented in a low-cost field-programmable gate array that can be integrated in the detector and can process more than 1 million events per second in real-time. Results. Testing the neural network for the simultaneous estimation of the event position and timestamp on experimental data we obtain 0.78 2D FWHM on the (x, y) plane, 1.2 depth-of-interaction FWHM and 156 coincidence time resolution on a 25 mm x 25 mm x 8 mm x LYSO monolith read-out by 64 3 mm x 3 mm Hamamatsu SiPMs. Significance. Our results show that monolithic crystals combined with artificial intelligence can rival pixellated crystals performance for time-of-flight PET applications, while having better spatial resolution and DOI resolution. Thanks to the use of very light neural networks, event characterization can be done on-line directly in the detector, solving the issues of scalability and computational complexity that up to now were preventing the use of monolithic crystals in clinical PET scanners.

A neural network-based algorithm for simultaneous event positioning and timestamping in monolithic scintillators

Carra, Pietro
Primo
Methodology
;
Giuseppina Bisogni, Maria
Membro del Collaboration Group
;
Ciarrocchi, Esther
Software
;
Morrocchi, Matteo
Methodology
;
Sportelli, Giancarlo
Conceptualization
;
Rosso, Valeria
Membro del Collaboration Group
;
Belcari, Nicola
Ultimo
Supervision
2022-01-01

Abstract

Objective. Monolithic scintillator crystals coupled to silicon photomultiplier (SiPM) arrays are promising detectors for PET applications, offering spatial resolution around 1 mm and depth-of-interaction information. However, their timing resolution has always been inferior to that of pixellated crystals, while the best results on spatial resolution have been obtained with algorithms that cannot operate in real-time in a PET detector. In this study, we explore the capabilities of monolithic crystals with respect to spatial and timing resolution, presenting new algorithms that overcome the mentioned problems. Approach. Our algorithms were tested first using a simulation framework, then on experimentally acquired data. We tested an event timestamping algorithm based on neural networks which was then integrated into a second neural network for simultaneous estimation of the event position and timestamp. Both algorithms are implemented in a low-cost field-programmable gate array that can be integrated in the detector and can process more than 1 million events per second in real-time. Results. Testing the neural network for the simultaneous estimation of the event position and timestamp on experimental data we obtain 0.78 2D FWHM on the (x, y) plane, 1.2 depth-of-interaction FWHM and 156 coincidence time resolution on a 25 mm x 25 mm x 8 mm x LYSO monolith read-out by 64 3 mm x 3 mm Hamamatsu SiPMs. Significance. Our results show that monolithic crystals combined with artificial intelligence can rival pixellated crystals performance for time-of-flight PET applications, while having better spatial resolution and DOI resolution. Thanks to the use of very light neural networks, event characterization can be done on-line directly in the detector, solving the issues of scalability and computational complexity that up to now were preventing the use of monolithic crystals in clinical PET scanners.
2022
Carra, Pietro; Giuseppina Bisogni, Maria; Ciarrocchi, Esther; Morrocchi, Matteo; Sportelli, Giancarlo; Rosso, Valeria; Belcari, Nicola
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1157019
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 23
social impact