The aim of this study was to develop a multiple linear regression (MLR) model to predict the specific methane production (SMP) from dry anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW). A data set from an experimental test on a pilot-scale plug-flow reactor (PFR) including 332 observations was used to build the model. Pearson ' s correlation matrix and principal component analysis (PCA) examined the relationships between variables. Six parameters, namely total volatile solid (TVSin), organic loading rate (OLR), hydraulic retention time (HRT), C/N ratio, lignin content and total volatile fatty acids (VFAs), had a significant correlation with SMP. Based on these outcomes, a simple and three multiple linear regression models (MLRs) were developed and validated. The simple linear regression model did not properly describe the data (R-2 = 0.3). In turn, the MLR including all factors showed the optimal fitting ability (R-2 = 0.91). Finally, the MLR including four uncorrelated explanatory variables of feedstock characteristics and operating parameters (e.g., TVSin, OLR, C/N ratio, and lignin content), resulted in the best compromise in terms of number of explanatory variables, model fitting and predictive ability (R-2 = 0.87).
Multilinear Regression Model for Biogas Production Prediction from Dry Anaerobic Digestion of OFMSW
Isabella Pecorini
;Renato Iannelli
2022-01-01
Abstract
The aim of this study was to develop a multiple linear regression (MLR) model to predict the specific methane production (SMP) from dry anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW). A data set from an experimental test on a pilot-scale plug-flow reactor (PFR) including 332 observations was used to build the model. Pearson ' s correlation matrix and principal component analysis (PCA) examined the relationships between variables. Six parameters, namely total volatile solid (TVSin), organic loading rate (OLR), hydraulic retention time (HRT), C/N ratio, lignin content and total volatile fatty acids (VFAs), had a significant correlation with SMP. Based on these outcomes, a simple and three multiple linear regression models (MLRs) were developed and validated. The simple linear regression model did not properly describe the data (R-2 = 0.3). In turn, the MLR including all factors showed the optimal fitting ability (R-2 = 0.91). Finally, the MLR including four uncorrelated explanatory variables of feedstock characteristics and operating parameters (e.g., TVSin, OLR, C/N ratio, and lignin content), resulted in the best compromise in terms of number of explanatory variables, model fitting and predictive ability (R-2 = 0.87).File | Dimensione | Formato | |
---|---|---|---|
sustainability-14-04393-v2.pdf
accesso aperto
Descrizione: articolo
Tipologia:
Versione finale editoriale
Licenza:
Creative commons
Dimensione
2.97 MB
Formato
Adobe PDF
|
2.97 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.