Reconfigurable computing has become very popular in recent years. Among all available architectures, Coarse-Grained Reconfigurable Arrays are the most prominent ones. They permit to efficiently accelerate several classes of data-intensive algorithms without giving up architecture versatility, and their use in machine learning applications is becoming increasingly widespread. In particular, the typical workload of Convolutional Neural Networks fits very well on this kind of architecture. Unfortunately, their use in Graph Neural Networks is not well investigated. Graph Neural Network algorithms apply to use cases that are characterized by non-euclidean data, such as computer vision, natural language processing, traffic forecasting, chemistry, and recommendation systems. In this work, we analyse the most relevant Coarse-Grained Reconfigurable Array devices and Graph Neural Network models. Our contribution includes a comparison between the hardware architectures and their use for the inference of Graph Neural Network models. We highlight their limitations and discuss possible directions that the development of these architectures could take.

Architectural Implications for Inference of Graph Neural Networks on CGRA-based Accelerators

Luca Zulberti;Matteo Monopoli;Pietro Nannipieri;Luca Fanucci
2022-01-01

Abstract

Reconfigurable computing has become very popular in recent years. Among all available architectures, Coarse-Grained Reconfigurable Arrays are the most prominent ones. They permit to efficiently accelerate several classes of data-intensive algorithms without giving up architecture versatility, and their use in machine learning applications is becoming increasingly widespread. In particular, the typical workload of Convolutional Neural Networks fits very well on this kind of architecture. Unfortunately, their use in Graph Neural Networks is not well investigated. Graph Neural Network algorithms apply to use cases that are characterized by non-euclidean data, such as computer vision, natural language processing, traffic forecasting, chemistry, and recommendation systems. In this work, we analyse the most relevant Coarse-Grained Reconfigurable Array devices and Graph Neural Network models. Our contribution includes a comparison between the hardware architectures and their use for the inference of Graph Neural Network models. We highlight their limitations and discuss possible directions that the development of these architectures could take.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1158396
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 0
social impact